Developing Political-Ecological Theory: The Need for Many-Task Computing

Timothy C. Haas, Associate Professor (Statistics)

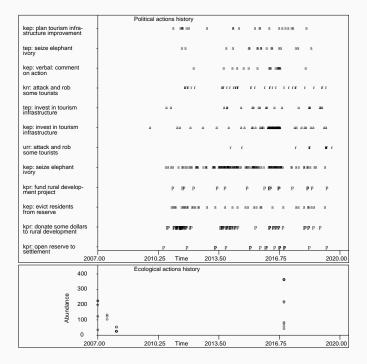
Sheldon B. Lubar School of Business, University of Wisconsin-Milwaukee, U.S., haas@uwm.edu

Model of a political-ecological system

Agents make decisions about actions that affect an at-risk species.

An individual-based submodel of this species' abundance affects and is affected by agent decisions.

Need for massive computing

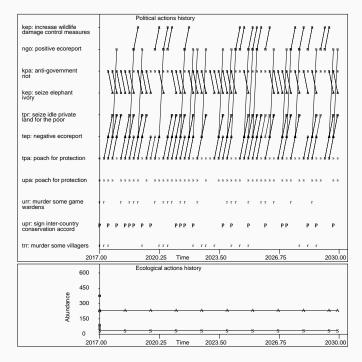

Model runs are expensive. This means that massive computing resources are needed to compute

- parameter estimates
- prediction error rates
- parameter sensitivities
- politically-feasible ecosystem management policies

Cluster computing

A scalable way to perform these computations is with a program running on a *cluster computer*.

Such a program can be written in a platform-independent language called JavaSpacesTM.



Parameter estimation: agent submodels

Find agent submodel parameter values that maximize the agreement between agent-generated actions and observed actions while simultaneously minimizing the Hellinger distance to a hypothesized set of values.

Parameter estimation: species abundance

Find values of the species abundance submodel's parameters that maximize the agreement between submodel-generated abundance and observed abundance while simultaneously minimizing the Hellinger distance to a hypothesized set of values.

Manuscript under review

https://www.biorxiv.org/content/10.1101/871434v1.full

Thank you.