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e A new toolkit finds politically feasible and effective ecosystem manage-
ment plans.

e A new cluster computing optimization algorithm is described.

e This algorithm permits the computation of these ecosystem manage-
ment plans.

e Statistical estimation of political-ecological model parameters also be-
come possible.

e A new model captures the East African cheetah-hosting political-ecological
system.
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Abstract

Because of the finality of a species’ global extinction, there is a need to focus
on stopping such extinction events from happening. The way forward is to
find and implement politically feasible and ecologically effective projects that
head off extinction events. This article delivers a software toolkit that imple-
ments one way to do this. This toolkit provides an organization the means
to (1) build a political-ecological model; (2) fit this model to a political-
ecological data set; and finally, (3) use this model to compute the most prac-
tical ecosystem management plan (MPEMP). This model-based approach to
first understanding the political issues surrounding the conservation of a par-
ticular species and then second, finding a conservation plan that works with
these political realities — is hamstrung by the expensive computations needed
to first, fit a political-ecological model to data and then second, compute the
MPEMP from this fitted model. Therefore, a new optimization algorithm
is presented that overcomes this challenge when run on either a commer-
cial or home-grown cluster computer. This new algorithm finds the global
solution to an optimization problem characterized by constraints and a black-
box, stochastic objective function. This toolkit is illustrated by finding the
MPEMP for conserving the cheetah (Acinonyz jubatus) population across
Kenya and Tanzania.

Keywords: extinction crisis, biodiversity conservation, political-ecological
models, model credibility, ecosystem management, robust statistical
estimators, optimization algorithms, high performance computing

Abbreviations:

CA: Consistency Analysis

IBM: Individual Based Model

MDAS: Multiple Dimensions Ahead Search

MPEMP: Most Practical Ecosystem Management Plan
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NGO: Nongovernmental Organization

PACSA: Parallel Asynchronous Coupled Simulated Annealing

SA: Simulated Annealing

SA-MDAS: Simulated Annealing — Multiple Dimensions Ahead Search
SDE: Stochastic Differential Equation

TSCC: Triton Shared Computing Cluster

1. Introduction

Earth is in the midst of an extinction crisis (Torres-Romero et al., 2024)),
(Garber et al.; 2024)) with many species becoming globally extinct every year
(Verones et al., 2022). Global extinction of a species is irreversible. Assuming
that the end goal of environmental and ecological conservation efforts is to
sustain ecosystems in states that are close to those circa 2025, it can be argued
that conservation efforts that directly contribute to stemming irreversible
ecosystem state changes should be given the highest priority both politically
and financially. To support these efforts, this article argues that the highest
priority should be given to (a) developing political-ecological models that can
credibly gauge likelihoods of global extinction events; and (b) developing
ecosystem management plans based on these models that can reduce these
likelihoods.

This article argues that biodiversity conservation efforts in particular,
should focus on understanding the political-ecological processes that lead to
global extinction events so that politically feasible and ecologically effective
ecosystem management plans can be identified that, when implemented, have
the greatest chance of stopping these events from happening.

This article describes a free software toolkit for developing such plans.
Armed with this toolkit, an organization first statistically estimates the pa-
rameter values of a political-ecological model. They then use this fitted model
to compute the most practical ecosystem management plan (MPEMP) (Haas,
2011, Chapter 4). Accordingly, this toolkit is referred to here as the MPEMP
constructor.

This article takes a broad view of what constitutes biodiversity to include
species that may not have any commercial value but are listed as Vulnerable
or Endangered on the IUCN Red List (Panwar et al., 2023), (Testa et al.,
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2025)), (Tobias et al.l [2025). Such species include many terrestrial mammals,
marine mammals, fish, and many plants.

The private sector, although paying lip service to the conservation of such
species, actually has a strong economic interest in biodiversity conservation
that is focused mainly on the preservation of potentially profitable genetic re-
sources. The commercial value of these resources was approximately USD44
trillion in 2022 (Medlong et al., [2022)). The total budget of NGOs engaged
in preserving endangered species by comparison, is in the neighborhood of
USD12 billion (Wanl, [2023). The efforts of the many professionals engaged in
work to curb biodiversity loss, although laudable, is dwarfed by the efforts in
the private sector to profit from biodiversity resources. In other words, the
big money is being spent on preserving species that have high commercial
potential rather than on species that, in-part, define the word, “wild.”

Some efforts are being made, however, to encourage more private sector
spending on species who have no commercial value but do have (1) ezistence
value, (2) bequest wvalue, or (3) ecosystem function value, i.e., the species
performs important ecosystem-support functions. Existence value is the per-
ceived value of knowing that a species exists, and bequest value is the per-
ceived value of conserving a species for future generations (Ressurreicao et
al. 2012]).

Beverdam et al| (2025) for example, call for a “blending” of private and
public sector funds to conserve species that are not commercially valuable.
An example of this type of financing mentioned by these authors is the so-
called “Rhino Bond” that targets the conservation of the commercially val-
ueless black rhinocerous (Diceros bicornis) in Africa.

1.1. The way forward

The concept that this article is offering a realization of, is a toolkit that
can find conservation plans that are ecologically effective and politically fea-
sible to implement. After describing how this concept is realized in software,
this article gives a proof of this concept by finding a management plan for the
East African cheetah that requires minimal changes to the political beliefs of
those groups surrounding this biodiversity conservation challenge while pre-
dicting that the cheetah population will remain viable through the planning
horizon.
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As an example of this article’s approach to biodiversity conservation, Haas
and Ferreira (2017) build an agent/individual based model of the political-
ecological system that surrounds rhinoceros ( Ceratotherium simum) poaching
in South Africa. These authors simulate several management options and
predict that under current management policies, rhinos in South Africa will
become extinct around the year 2036.

Such models, however, are in their infancy but need to quickly mature be-
cause at present extinction rates, many species including most large mammals
will be globally extinct by about 2055 (Ceballos et al. | 2015). In other words,
if present trends continue, a significant proportion of the earth’s species will
soon be gone due mainly to the activities of the most recent (circa 2025)
several generations of humans.

This article gives a tested toolkit, namely, the MPEMP constructor that
can be used to (a) model such political-ecological systems; and (b) based
on such models, compute ecosystem management plans that, when imple-
mented, fend off species extinction events. The MPEMP constructor stream-
lines the construction of an integrated model composed of agent-based sub-
models of political processes that interact with an individual-based popula-
tion dynamics submodel of an at-risk species.

What mechanisms of biodiversity loss would such models represent? Habi-
tat loss is often pointed to as the principal driver of global biodiversity loss
(Hanskil [2011)). But recently, one study could find no statistical difference
between loss of habitat and direct exploitation, i.e., intentional harvesting
of wildlife either legally or illegally (Jaureguiberry et all 2022). Illegal har-
vesting and illegal trading of wildlife is referred to as wildlife trafficking.
The scale of exploitation-curbing biodiversity conservation projects that is
needed to slow the globe’s ongoing biodiversity losses, is much larger than
the sum total of currently active projects. To help address this disparity,
the MPEMP constructor is engineered to focus on the modeling of direct
exploitation drivers of biodiversity loss.

Recently, the literature has called for a more holistic view of biodiversity
conservation rather than a focus on single species preservation (Tobias et al.|
2025). This view, called “process-based” by Tobias et al.| (2025) argues that
maintaining ecological processes that drive critical ecosystem functioning,
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should be the primary goal of biodiversity conservation initiatives. These
processes include adaptation, gene flow, dispersal, and trophic interactions.

Acknowledging that the goal of avoiding the extinction of species that
have evolved over millions of years is not to be abandoned, [Tobias et al.
(2025)) call for a synthesis of species-centric and process-based approaches to
biodiversity conservation:

“We advocate integration and communication across the two pri-
mary cultures of conservation—species-centric and process-based—as
the most effective progress will occur when these two missions op-
erate in tandem and synergistically ((Tobias et al., 2025))).”

Process-based approaches to biodiversity conservation, however, have yet to
wrestle with direct exploitation effects on an ecosystem’s functioning.

Such integration is straightforward within the methods detailed in this
article. For instance, functional diversity (FD) is one way to describe the
healthy functioning of an ecosystem. FD can be quantified from remotely-
sensed NDVI data (Li et al., 2025)). And, trophic transfer between predators
and their prey can be quantified with the AB ratio reviewed in [Carroll et al.
(2019). These two metrics can easily be added to the species abundance ob-
jective function employed in this article to arrive at an analysis and planning
workflow that integrates species-centric goals and process-based goals.

The MPEMP maximally increases the probability of a species’ survival
while requiring the least change in the beliefs held by identifiable groups
of humans in those countries that host a selected at-risk species. Indeed,
according to|Haas| (2024c), any project that is intended to sustain biodiversity
needs to have its MPEMP computed so that the conservation project can
either be modified to enhance its conservation effectiveness — or abandoned
altogether and replaced by a project that implements the MPEMP. The
MPEMP constructor guides the user through this MPEMP computation.

An organization would use the MPEMP constructor to complete the fol-
lowing five steps.

1. Acquire a data set that pertains to the political-ecological system sur-
rounding a selected at-risk species.
2. Create a political-ecological model of this system.
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3. Compute statistical estimates of this model’s parameters.

4. Display and assess the political-ecological actions generated by this
fitted model.

5. Compute the MPEMP from this fitted model and implement it.

This five-step procedure has application in a business-oriented approach to
conserving a selected at-risk species (Haas, 2022), (Haas, [2024c). Briefly,
revenue from a commercial offering funds a biodiversity project. This project
operationalizes the MPEMP that has been computed for that species and
the political-ecological system that hosts it.

This article proceeds as follows. A description is given in Section 2 of
this interacting influence diagrams modelling architecture (Haas, 2011, Chap-
ter 2). Then, as an example, this architecture is used to build a model of
the political-ecological system that hosts the East African cheetah (Acinonyx
Jubatus) population. A new cluster computer-based optimization algorithm
is presented in Section 3 that has developed out of proposals advanced by
Haas| (2024). The above model is fitted via this new algorithm to a political-
ecological actions history data set in Section 4. Statistical estimates of this
model’s parameter values found via Consistency Analysis (CA) (Haas, 2011,
Chapter 3) are computed by running the new optimization algorithm on the
Triton Shared Computing Cluster (TSCC) at the San Diego Supercomputer
Center (San Diego Supercomputer Center, |2025)). In Section 5, this statis-
tically estimated model is used to compute the associated MPEMP. Section
6 contains a list of challenges that need to be overcome before such models
can be widely used to identify extinction-avoiding management plans. Some
conclusions are reached in Section 7.

2. An Integrated Political-Ecological Model

2.1. Why do submodels need to be integrated?

Given a model composed of political submodels and an ecosystem sub-
model, if actions that are generated by political submodels do not impact the
ecosystem submodel at model-generated time points — and ecosystem sub-
models actions do not in-turn, affect these political submodels, then feedback
loops between political processes and ecological processes cannot emerge.
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For instance, if a climate model is exogenously set to a schedule of reduc-
tions in carbon emissions forcing, there is no mechanism for modelling the
vicissitudes of political support for climate policy. Such vicissitude might take
the form of a sequence of governmental administrations alternately support-
ing and then not supporting climate change mitigation policies. The jagged
time series of carbon emissions that results from this support-nonsupport
policy record cannot be realistically simulated unless this sequence of dif-
ferent administrations and the effects of their actions on earth’s climate is
represented in the simulation model. Hence, there needs to be an integrated
model of political processes interacting with ecological processes. In this ar-
ticle, the main ecological process that needs to be modeled is the population
dynamics of an at-risk species.

2.2. Advantages of an individual-based model of an at-risk species
As Netz et al. (2022) note,

“To allow for mathematical analysis, models of predator—prey co-
evolution are often coarse-grained, focussing on population-level
processes and largely neglecting individual-level behaviour. As
selection is acting on individual-level properties, we here present
a more mechanistic approach: an individual-based simulation
model for the coevolution of predators and prey on a fine-grained
resource landscape, where features relevant for ecology (like changes
in local densities) and evolution (like differences in survival and
reproduction) emerge naturally from interactions between indi-
viduals” (Netz et al., 2022).

2.3. Example: The East African cheetah population

The cheetah is listed as Vulnerable on the IUCN Red list and as Endan-
gered by the Namibian government (Milloway, 2025). |World Population
(2025) reports 938 cheetah in Tanzania and 715 in Kenya. These two coun-
tries share a border and hence have the potential of interacting with each
other politically. Therefore, as an example, a political-ecological model is
built of the cheetah-hosting political-ecological system enclosed by these two
countries. This model consists of submodels of several groups that affect
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the cheetah population, and an ecosystem submodel of East African chee-
tah population dynamics. All of these submodels interact with each other
through time.

This agent/individual-based political-ecological model of the cheetah-
hosting ecosystem contained within Kenya and Tanzania, is new.

2.83.1. Submodels interact through a bulletin board

At each time step, each group submodel and the ecosystem submodel
read actions directed against themselves from a bulletin board. Conditional
on a read-in input action, a group submodel computes the expected value of
overall goal attainment that they believe they will receive if they implement a
particular action-target combination. After making this computation for all
action-target combinations in their repertoire, they post to the bulletin board
the combination that has the highest expected overall goal attainment. The
Ecosystem Management Actions Taxonomy (EMAT) (Haas, 2024b) dictates
what actions a submodel recognizes and what it holds in its repertoire of
output actions.

The ecosystem submodel reacts to actions directed against it by adjusting
its output of cheetah and prey abundance across time.

2.3.2. Group submodels

Submodels represent Kenya’s presidential office, the Kenya Wildlife Ser-
vice, the rural residents of Kenya, and the pastoralists of Kenya. Simi-
lar submodels are constructed for Tanzania. A ninth group submodel is
constructed of a conservation-focused nongovernmental organization (NGO)
that runs conservation projects in both of these countries. Haas| (2011, Chap-
ter 2), Haas and Ferreiral (2017)), and Haas| (2025)) detail the cognitive theory
and causal flow that these submodels use to decide what action to implement
based on their beliefs and those actions that have been directed against them
(called input actions). These group decision making submodels make deci-
sions that they believe will further their own set of goals without regard to the
goals of other groups and, except for the wildlife protection agency groups,
without regard to what effects their actions might have on the ecosystem or
the abundance of any particular species.
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2.3.8. Cheetah-hosting ecosystem submodel

The ecosystem submodel tracks the dynamics of the trans-Kenya-Tanzania
cheetah population (abundance through time). This submodel interacts with
the above rural resident and pastoralist group submodels. Cheetah are indi-
vidually modeled following the individual-based model (IBM) paradigm. For
simplicity, however, this IBM interacts with a stochastic differential equation
(SDE) submodel of cheetah prey such as Thomson’s gazelle (Gazella thom-
soni) (Fitzgibbon, 1990). Both the cheetah IBM and the herbivore SDE
represent population dynamics stochastically.

This synthetic predator-prey submodel is new and extends a model de-
scribed in Kimbrell and Holt (2005).

Parameterization of this submodel follows a set of data-based values re-
ported in Kelly et al.| (1998)):

“Data are presented on the demography and reproductive suc-
cess of cheetahs living on the Serengeti Plains, Tanzania over a
25-year period. Average age at independence was 17.1 months,
females gave birth to their first litter at approximately 2.4 years
old, interbirth interval was 20.1 months, and average litter size
at independence was 2.1 cubs. Females who survived to inde-
pendence lived on average 6.2 years while minimum male average
longevity was 2.8 years for those born in the study area and 5.3
years for immigrants” (Kelly et al., |1998).

Working from this information, Table [1| contains the parameter values used
in the cheetah IBM and the prey SDE.
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Parameter Value

Cheetah

Life expectancy 6.2 (females); 2.8 (males)
Age at maturity 1.42
Sexual maturity 2.4 (females)
Interbirth interval 1.675

Herbivores
Initial abundance (minor poaching) 2250
(moderate poaching) 4500
(severe poaching) 8750
Birth rate — death rate (minor poaching) -0.003
(moderate poaching) -0.014
(severe poaching) -0.017
White noise multiplier (minor poaching)  0.001
(moderate poaching) 0.001
(severe poaching) 0.001

Table 1: Ecosystem submodel parameter hypothesis values. Cheetah IBM parameter
values are derived from |Kelly et al.|(1998). The temporal unit is years. The submodel
uses only the averaged cheetah life expectancy (4.5 years). Submodel output of herbivore
abundance depicts a negative trend through time that is influenced by the amount of
herbivore poaching.

A data file is created based on estimated cheetah abundance reported in
World Population| (2025).

3. A New Optimization Algorithm

A new optimization algorithm is introduced herein that combines Simu-
lated Annealing (SA) (Corana et al |1987) and Multiple Dimensions Ahead
Search (MDAS) (Haas, 2020). This new algorithm is called Constrained
Stochastic Synchronous Coupled Simulated Annealing — MDAS (SA-MDAS).

3.1. Background

Consider an optimization problem wherein an objective function in n
dimensions (hereafter, variables) is to be minimized. A black-box optimization
algorithm can handle all types of deterministic objective functions without

10
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assuming anything about their smoothness or presence of discontinuities. To-
date, however, there has been little work on the development of algorithms
that can optimize a noisy (hereafter, stochastic) black-box objective function.

As reviewed in Haas (2024]), one algorithm that is capable of finding
the global solution to a deterministic black-box objective function is Parallel
Asynchronous Coupled Simulated Annealing (PACSA) of Gongalves-e-Silva
et al.| (2018)). This algorithm however, does not recognize constraints and
is not designed for stochastic objective functions. |Haas| (2024) proposes for
future work, the development of a general purpose black-box optimization
algorithm that would handle bound constraints and, by incorporating the
algorithm of Branke et al. (2008) into PACSA, stochastic objective func-
tions. This envisioned program would compute statistical estimates of the
parameters of a political-ecological model. As explained next, however, a
combination of theory and computational experience has led to the devel-
opment of an algorithm that is different than the one envisioned in Haas
(2024)).

One final background note: In the eighteenth century, the person who
organized an opera production was referred to as an impresario. The in-
dividuals who performed the opera be they singers, dancers, instrumental-
ists or conductors, were (and are) referred to as performers (Holmes|, [1994).
These terms are used here to refer to different roles given by an optimiza-
tion algorithm to different compute nodes who collectively, make up a cluster
computer (Werstein et al., 2006]).

3.2. Rationale for a new algorithm

In SA-MDAS, an impresario posts tasks to a JavaSpace (Haas, 2020)
for performers to take and complete. Once completed, a performer posts
a task’s results back to the JavaSpace. The impresario then takes these
results from the JavaSpace and uses them to decide where next to search.
Here, a JavaSpace is implemented via the GigaSpaces XAP (Ciatto et al.
2020). SA-MDAS is implemented in the JAVA language because JAVA is
(a) computationally efficient; (b) easily parallelized; and (c¢) easy to read and
hence, easy to maintain (Haas, [2020)).

When the cooling schedule of |Aarts and Korst| (1989) is employed within
PACSA, computational experience has shown that the use of equation (1) in

11
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Gongalves-e-Silva et al.| (2018) causes the maximum accepted function value
term to become large as iterations increase. This happens because some of
the performers begin to return poor (large) objective function values when
their solution chains enter suboptimal subspaces. This increased value of
the maximum-function term causes the acceptance probability to become
small — causing progress towards an optimal solution to essentially stop. For
this reason, the asynchronous inter-performer coupling scheme developed in
Gongalves-e-Silva et al.| (2018)) is not used in SA-MDAS.

Regarding stochastic objective functions, [Bouttier and Gavral (2019) pro-
vide a convergence proof for their approach to handling such functions within
an SA optimization algorithm. For this reason, the Bouttier and Gavra
(2019) approach to handling stochastic objective functions is employed in
SA-MDAS rather than the approach taken by [Branke et al.| (2008)).

3.8. Algorithm summary

SA-MDAS uses both SA and MDAS to solve an optimization problem
that has a (possibly) stochastic black box objective function and continuous
variables that are bound-constrained. Implicit constraints are also accom-
modated. To ensure finite-time convergence, SA-MDAS employs the cooling
schedule of Aarts and Korst| (1989, chapter 4).

SA-MDAS employs many performers in order to both increase the chance
that a global solution is found, and to reduce the time it takes to find it, called
the wall clock time (Jiang and Singh, [2010). This is accomplished in-part
through a new method developed herein called Multiple Periodic Exchange
(MPE) — a scheme similar to the class of parallel SA algorithms dubbed
periodic exchange schemes by Lee and Lee| (1996)).

A well-known characteristic of SA is its slow rate of convergence (Guilmeau
et al., 2021). This drawback is addressed in SA-MDAS by switching the
search algorithm from a parallel SA-like search algorithm to a parallel Hooke-
Jeeves-like search algorithm namely, MDAS.

The result of this two-phase architecture (Ferreiro et al., 2019) is an algo-
rithm that takes advantage of SA’s global search capability enhanced through
cluster computing — but that avoids SA’s proclivity for slow convergence by
switching to an efficient local search algorithm (MDAS) that also leverages

12
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a cluster computing environment. The switch happens only after significant

effort has been directed towards finding a subspace that has a high likelihood

of containing the global minimum. Specifically, this switch is delayed until

the SA step length along any variable becomes so small that the likelihood

of a move into a radically different subspace also becomes small.

The Appendix contains details of how SA-MDAS handles continuous vari-

ables, stochastic objective functions, and messaging between compute nodes.

This Appendix also contains comparisons of SA-MDAS with other optimiza-

tion algorithms.

3.4. Algorithm
1. Global search phase:

(a)

Set values for ny (see Appendix), and the chain length. Also,
find initial values for each variable’s step length, and the control
parameter ¢ (“temperature”). Initialize this latter parameter so
that the percentage of moves accepted is between 70 and 90. Run
this task on the impresario compute node alone.

Within SA’s inner loop, start each of m performer nodes at the
same initial solution.

Run these performers simultaneously but independently over one
Markov chain.

Always accept solutions that deliver a score value that is smaller
than current value. Accept other solutions with probability

exp {—(trial _value — current _value)/t} . (1)

Block until all performers have finished their respective chains.
Update the sample size used to compute the average value of a
stochastic objective function. Also update each variable’s step
length.

Update t via the rule developed in Aarts and Korst| (1989, Chap-
ter 4).

Return if a solution has been found such that the score function
has been reduced to 90% of its initial value. Otherwise, continue
to Step .

13
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(i) Execute MPE by reinitializing every performer with the solution
that gave the current smallest score value.

(j) Go to Step c.

2. Local search phase:

(a) After the SA subalgorithm has returned, use the returned solution
as the starting solution in an MDAS run. Set the MDAS algorithm
to search forward three variables at a time.

(b) Run MDAS to convergence and then stop.

3.5. SA-MDAS performance on analytic objective functions

Haas| (2020)) reports that MDAS correctly solves Bukin’s F4 function
(Mishra, 2006). Using n, = 60 (Corana et al., 1987), a chain length of
10, and 10 performers, SA-MDAS finds the global minimum solution to
Bukin’s F4 function in 12,353 objective function evaluations. SA-MDAS
fails to find the global minimum solution for Bukin’s F6 function. But when
the global search phase of SA-MDAS is allowed to run to convergence rather
than switching to local search, the global minimum of this function is found
after 4,716,030 function evaluations. Bukin’s F4 function has a pathological
number of non-global minima (Hasanzadeh et al. [2022) — as does Bukin’s
F6 function. Clearly, SA-MDAS is capable of finding the global minimum
of a highly multi-modal function when nearly unlimited computing power is
available.

Real-world functions are not necessarily as pathological as Bukin’s F6.
Hence, the performance of SA-MDAS on Bukin’s F4 gives gives some credence
to the idea that it can find nearly optimal solutions to real-world conservation
optimization problems. To support this supposition, SA-MDAS is assessed in
the next Section by seeing how well it statistically estimates the parameters
of a political-ecological model built to represent a real world conservation
challenge.

4. Statistical Estimation of a Political-Ecological Model

4.1. Overview of the CA estimator

The CA estimator of [Haas (2011, Chapter 3) produces a set of consis-
tent parameter values such that model output balances agreement with data

14
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versus agreement with cognitive theories of decision making. To do this, an
objective function is defined to be the priority-weighted sum of standardized
measures of the agreement with a data set (gs), and the agreement with
the model’s joint probability distribution across its stochastic nodes (here-
after, distribution) under hypothesis parameter values (gy). The value of
ch € (0, 1) is the relative priority given to having the consistent (estimated)
model’s distribution agree with the one specified by the hypothesis parameter
values — versus agreeing with the data (here, an observed actions history):
goa = (ch)gm + (1 — ch)gs.

When ch is 0, CA becomes a frequentist statistical estimator. When ch
is 1, CA finds parameter values that result in the model maximally agreeing
with both decision making theory and with ecological theory that collectively,
dictate how the political-ecological system ought to behave.

CA fits a model in two stages. Stage I consists of finding parameter values
so that the model matches as many observed actions as possible. Then, this
Stage I percentage of action-agreement (match fraction) is computed. Next,
Stage 11 adjusts these Stage I parameter values until the model’s distribution
is as close as possible to the hypothesis distribution while maintaining Stage
I’s match fraction. The idea behind this two-stage approach is to minimize
the occurrence of jump discontinuities (Schober and Prestin, 2023)) caused by
one or more group submodels switching to different action-target combina-
tions due to a small change in a parameter’s value as the algorithm evaluates
the objective function at different points in the solution space.

4.2. Objective function

Because of the above-mentioned potential for jump discontinuities, it is
important to not accept any trial moves that reduce the match fraction from
that achieved in Stage 1. This agreement is enforced by adding a large penalty
to the objective function if a move causes a reduction in the agreement with
the observed actions history. Use of such a penalty function to, in-effect, rep-
resent an implicit constraint, works in SA-MDAS because numerical insta-
bilities that might be caused by explosive numerical derivative computations
cannot happen because SA-MDAS does not compute such derivatives.

Stage II uses a stochastic agreement function for gy that is the negative
of the Hellinger distance between the consistent and hypothesis distributions.
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435 Letting P(P = i) = p; (and P(Q = i) = ¢;), for two discrete distributions,
436 this distance is

(VPi = Va:)? (2)

1

N —

H(P,Q) =

d
437 where d is the number of discrete values that the random variable P (and Q)
438 can take on (Suresh| 2021).

439 4.3. Stage I’s action-matching algorithm

440 Stage I finds starting parameter values by executing two subalgorithms.
441 The first subalgorithm entails the sequential matching of action-target com-
442 binations with those observed. This subalgorithm is as follows.

443 1. At each time point, check the match between the observed action-target
444 combination and the one generated by the group submodel. If they do
445 not match, replace the submodel’s action-target combination with that
446 observed.

447 2. If this replacement causes the overall fraction of matches to become
448 smaller, reject this replacement.

449 3. If the end-time has not been reached, go to the next group submodel
450 or next time point. Otherwise, write this desired actions history to a
451 file and exit.

452 The second subalgorithm proceeds by adjusting submodel parameters un-

453 til model output matches as many action-target combinations in the desired
454 actions history as possible — regardless of its agreement with the hypothesis
455 distribution.

456 4.4. Results

457 SA-MDAS is used to statistically estimate parameter values of the political-
458 ecological model of East African cheetah trafficking as follows.

459 4.4.1. Actions history

460 The STAR protocol of Haas| (2024b)) is used to collect actions reported in
461 online press sources concerning cheetah management in Kenya and Tanzania.
462 Doing so yields 105 actions over the time period 2019 through May 2025
463 (Table [2).
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Date Actor  Action Target(s)
2019.55 kenpas starve due to_drought kenpas
2019.71  kenrr  poach for food three,kenpres kenepa,ngo
2019.99 tanrr poach for food one,cheetaheco
2021.20 ngo fund rural development project one,chetaheco
2022.17 kenepa translocate animals one,chetaheco
2022.34  tanrr  plant_trees one,cheetaheco
2023.67 kenrr poach for cash one,chetaheco
2023.73  kenrr  poach for food three,kenpres kenepa,ngo
2024.49  kenrr poach for cash one,chetaheco
2025.18  kenrr poach for cash one,chetaheco

Table 2: Selected political-ecological actions extracted from online sources with the STAR
protocol of [Haas| (2024b))
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4.4.2. Model fitting

The parameters that determine how likely Kenya rural residents and Tan-
zania rural residents think they will be arrested after they poach cheetah for
cash are adjusted so that the model’s output agrees with the observed ac-
tions history while exhibiting a joint probability distribution across its nodes
that maximally agrees with the distribution defined to represent theoretical
propositions about these beliefs. Adding-in parameters to represent Kenya
pastoralist and Tanzania pastoralist beliefs is planned for future work.

Here, the hypothesis distribution values of these parameters represent
the theory that a typical rural resident believes there is little chance they
will have any interaction with police after they poach a cheetah for cash.
Equal priority is given to agreement with the hypothesis distribution versus
agreement with observations (ch = 0.5).

This CA is implemented as a 54-variable optimization problem. These
variables are the parameters that determine the Scenario Imminent Interac-
tion with Police (SIIWP) node in the Kenya rural resident submodel and the
Tanzania rural resident submodel under the conditioning event that a rural
resident decides to implement the output action, poach cheetah for cash.

SA-MDAS employed three performers with each performer accessing 10
threads when performing a parallel Monte Carlo simulation. Each such simu-
lation required 1000 simulated realizations of a submodel’s stochastic nodes.
Such a simulation was run whenever a submodel received a new input action-
target combination at some step in the time interval that the model was run
over.

Because parameters in the ecosystem submodel were not being adjusted,
in order to reduce wall clock time, ecosystem submodel calculations were
turned off during this run of the SA-MDAS algorithm. Doing so reduced the
objective function’s evaluation time from 44 seconds to 15 seconds.

Due to a modest computing budget, the SA-MDAS algorithm was allowed
to run for up to 3000 function evaluations during each phase. The run’s
wall clock time was 6.6 hours. Phase one converged after 2991 function
evaluations, and phase two was terminated after completing 3043 function
evaluations due to exceeding the maximum number of function evaluations.
After the run had finished, the algorithm had increased the value of go4 by
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23.3% (Table [3).

At this solution, ecosystem computations were turned on and the ob-
jective function computed one final time (Table . Including the ecosystem
submodel defined by its hypothesis distribution parameter values significantly
affects the model’s overall fit as quantified by goa (Table ).

Agreement measure Symbol Initial Consistent Percent
value value increase

Agreement with observed ggGTp ) 0.491 0.528 0.075

actions history (match

fraction)

Agreement with observed ggECO) -0.141 0.0 1.000

cheetah abundance

Average agreement gj(qGTp) -0.486 -0.419 0.138

between consistent
group submodels and
hypothesis submodels

Overall agreement gca -0.382 -0.294 0.230

Table 3: CA agreement measures before and after the SA-MDAS run wherein ecosystem
computations were kept off during the computation of the final values. Agreement between
the ecological submodel’s consistent distribution and its hypothesis distribution is not
computed because no parameters within this submodel are being estimated.
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Agreement measure Symbol Initial Consistent Percent

value value increase
Agreement with observed ggGTp ) 0.528 0.509 -0.360
actions history (match
fraction)
Agreement with observed ¢ 0141 -0.137  0.028
cheetah abundance
Average agreement gl(frp) -0.486 -0.419 0.138
between consistent
group submodels and
hypothesis submodels
Overall agreement gca -0.382 -0.338 0.114

Table 4: CA agreement measures before and after the SA-MDAS run with ecosystem
computations turned on when computing the final values.

503 Figure [I] displays the actions history generated by the CA-estimated
504 model along with those observed actions that are matched by the CA-estimated
505 model. To exhibit typical interaction patterns that are obscured in Figure
506 Figure |2| exhibits a closeup of the period from 2024 to 2025.
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Figure 1: Model-generated actions history from 2020 through 2029. Green crosses are
observed actions matched by the the CA-estimated model.

observation on cheetah abundance.
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Figure 2: Model-generated actions history from 2024 to 2025.

507 This example shows that SA-MDAS can find CA estimates of a political-
508 ecological model’s parameters in a practical amount of wall clock time.

509 5. Finding the MPEMP

510 Haas and Ferreiral (2017) state that

511 “A more general method of developing management policies is the
512 most practical ecosystem management plan (MPEMP) of [Haas
513 (2011, Chapter 4). The MPEMP emerges from the pattern of
514 group behaviors that results from modifying one or more group
515 belief systems. These modifications are such that the agreement
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between group belief systems that are estimated from data — and
the belief systems that produce group actions that cause a desired
ecosystem state, is maximized. In other words, the MPEMP is the
sequence of group behaviors that occur from the least change in
existing group beliefs systems that still achieves ecosystem state
goals” (Haas and Ferreiral 2017).

Clearly, finding the MPEMP involves solving an optimization problem.
This optimization problem is constrained by the requirement that any solu-
tion needs to produce values of the ecosystem’s output variables that are close
to the desired values at the desired point in time. This implicit constraint
is incorporated into SA-MDAS as a penalty function in a manner similar to
the CA constraint of maintaining a maximal fraction of model-to-observed
action matches.

Only group submodel parameters can be variables in this constrained
optimization problem. CA-estimated parameter values are used as starting
values for all group submodels. During the optimization’s search, however,
all ecosystem submodel parameters are held at their CA-estimated values.
Doing so represents the assumption made in the MPEMP computation that
ecosystem dynamics are not under anthropogenic control but group belief
systems are. Therefore, realistic ecosystem management plans should be re-
stricted to making small modifications to human beliefs — and hence behavior
rather than attempting to make changes to those ecological mechanisms that
produce the modeled ecosystem’s dynamics.

The preferred solution to the MPEMP optimization problem is a local
one rather than a global one. This is because the MPEMP is the plan that
requires the least change in existing beliefs (as represented by the model’s
consistent distribution) needed to redirect human behaviors enough to allow
the ecosystem to reach a desired state. Hence, a solution that is close to the
existing set of beliefs needs to be found.

The objective function in an MPEMP optimization problem needs to in-
clude the ecosystem submodel. This because the effect of group actions on
the ecosystem needs to be detected every time the objective function is eval-
uated. Including the ecosystem submodel in the political-ecological model’s
simulation, however, can increase the objective function’s evaluation time.
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Further, when the ecosystem submodel is stochastic as in the East African
cheetah example herein, the method of |[Bouttier and Gavral (2019) for solv-
ing a stochastic, black-box optimization problem needs to be employed. This
method involves taking the average of repeated evaluations of the stochastic
objective function at a trial solution point. This averaged value has a smaller
variance than the original stochastic objective function.

The above discussion reveals that there are two computationaly expen-
sive factors that complicate the evaluation of an MPEMP objective function.
These are: The need to include the ecosystem submodel in the political-
ecological model’s simulation, and the need to compute an average over sev-
eral function calls each time the optimization algorithm requires an objective
function value. These two factors can cause the MPEMP objective function
to have a long evaluation time. For instance, in the example below, the ob-
jective function’s evaluation time is about 59 seconds. This long evaluation
time in-turn, causes a long wall clock time before a solution to the MPEMP
optimization problem is found. And long wall clock times can be expensive.

5.1. MPEMP algorithm
5.1.1. Needed definitions
1. The vector

B — |Gy gEcoy]’
contains parameters of the group submodels, and the ecosystem sub-
model, respectively.

2. Let the vector, Q(B) contain the monitored ecosystem submodel vari-
ables whose values are generated by the ecosystem submodel using
parameter values contained in B.

3. Let qq contain the desired ecosystem state in terms of Q(.) along with
the time when these values are to be achieved.

4. Identify those actions that, if taken, would contribute the most towards
the ecosystem submodel producing the values in qq. And, identify
those actions that, if ceased, would raise the likelihood of the ecosystem
submodel producing the values in q4. Collect all of these desirable and
undesirable actions into a set called ¢y pemp.
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5.1.2. Algorithm
The following mathematical form of the MPEMP algorithm extends the
one reported in Haas| (2020).
1. Compute CA estimates of selected model parameters, i.e., up-
date By to the most recent set of consistent parameter values:

Be.
Compute qg = F [Q(Bg)].
Specify qq and cyrpewmp.

Compute initial values for B with CA’s Initialize step.

AN

Compute

Rl I

Gr
e e Pt

B(Grp)

under the set of constraints specified by cyperp.

Note that during the search in Step 5, BEECO) is unchanged.

5.1.3. Quantifying political feasibility

The MPEMP algorithm implements one way to quantify the concept of a
politically feasible ecosystem management plan: Associate political feasibility
with gH(B%\?[}I;)EMP) € (—o0, 0] where B%\C/:[g)EMP contains the parameters of
the decision making submodels whose values have been modified from those
in B%Grp) in such a way that now, the sequence of output actions taken by the
different groups in the model causes a desired ecosystem state at a desired
future time point (qq).

A measure of a plan’s political feasibility can be defined as

v =gy " (B BEnp)/ (195 ™ (Br)| +0.000001). (4)

The numerator is the agreement of the MPEMP distribution with the hy-
pothesis distribution where large negative values indicate poor agreement.
The first term in the denominator is the absolute value of the agreement of
the model’s distribution with the hypothesis distribution — using parameter
values from the hypothesis distribution itself. When approximation error is

zero, this term is zero. Hence, ggfrp)(Bﬁ%)EMP) <145 (By).
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A plan having a value of ¢ << —1.0 will face stiff political resistance to
its implementation because significant changes to the belief systems of one
or more groups needs to happen — while a plan having a value close to -1.0
should not face such strong political headwinds.

5.2. Results

The desired ecosystem state is 800 cheetah across Kenya and Tanzania
in the year 2029.

The parameters to be modified during the search for the MPEMP are
those used in the above CA example with the addition of the parameters
defining the node: Number of Cheetah Poached (NMPOACHED) under the
proposed action of poach cheetah for protection for both Kenya rural residents
and Tanzania rural residents.

These parameters are included in the MPEMP computation in order to
study the feasibility of a two-pronged approach to cheetah conservation: Dis-
couraging rural residents from poaching cheetah for cash while at the same
time increasing antipoaching measures. To these ends, the SITWP parame-
ters are included to guide the amount of belief-change that would be needed
to discourage rural residents from poaching cheetah for cash — and the NM-
POACHED parameters to find the needed increase in antipoaching measures
to stop rural residents from poaching cheetahs for protection. Optimizing
these two sets of parameters simultaneously results in smaller changes to
these parameters relative to the changes that would be required if only one
of these sets was changed without changing the other. And smaller changes
give the plan greater political feasibility.

In summary, the CA estimation modifies the SIIWP parameters concern-
ing poach cheetah for cash. The MPEMP computation modifies the SITWP
parameters concerning poach cheetah for cash and the NMPOACHED pa-
rameters conditional on poach cheetah for protection.

5.2.1. MPEMP computation

To begin the optimization computation at a feasible solution, initial values
of the SITWP parameters were modified to produce the following output
actions by both the Kenya rural resident group, and the Tanzania rural
resident group: no poach cheetah for cash actions, no poach cheetah for food
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actions; but high probabilities for the actions, poach cheetah for protection,
and protest national park boundaries.

Due to a modest computing budget, the sample size for averaging values
of the stochastic objective function was fixed at three for the entire run. Not
allowing this sample size to increase each pass through SA’s outer loop means
that the convergence proof of Bouttier and Gavral (2019) is only partially
satisfied for this run. This proof states that if the algorithm of [Bouttier
and Gavral (2019) is followed, SA will converge to the global minimum of
the stochastic objective function’s expected value. Had this sample size been
allowed to increase every pass through SA’s outer loop, it would have equalled
39 when phase one finished.

Running on the TSCC, the SA-MDAS algorithm was restricted to 3000
objective function evaluations for each phase. The run employed three per-
formers executing on 10 threads each. The run’s wall clock time was 8.8
hours. The initial MPEMP objective function value was -0.779, and the final
value was -0.711 for a 8.66% increase. Phase one converged after 1661 func-
tion evaluations and phase two terminated after 3037 function evaluations
because it had exceeded its maximum number of function evaluations.

5.2.2. The computed MPEMP

This run produced an MPEMP that is projected to allow an expected
cheetah population size of 278 by 2029. This is short of the desired goal of
800 cheetah by 2029 but avoids the forecast extinction event at the end of
2029 under the business-as-usual plan. The measure of the plan’s political
feasibility, ¢ was computed to be -1.025.

Tables [f] and [6] show each parameter’s definition, its CA value, and its
MPEMP value. These parameter value changes indicate that the MPEMP is
to (a) change the belief in being arrested for poaching cheetah for cash from
being perceived as negligible to being perceived as likely; and (b) increase
antipoaching measures to the point where Kenya and Tanzania rural residents
each succeed in poaching less than six cheetah per week.

The number of cheetah poached per week by Kenya rural residents and
the number of cheetah poached per week by Tanzania rural residents were
not adjusted by the CA. Hence, these two parameters were held at their
hypothesis values. These hypothesis values are slightly below the upper
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675 bound constraint shared by these parameters. This upper bound value is
676 six. This value indicates a significant amount of poaching that aligns with
677 the hypothesis-belief held by these rural residents that they will not be ar-
678 rested for poaching cheetah.
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Parameter Node CA  MPEMP Change > 10%

value value fraction change?

1 Number Poached 5.994 3.574 00.403 *
2 SITWP 00.274  00.193 00.294 *
3 SITWP 00.356  00.232 00.347 *
4 SITWP 00.369  00.573 00.555 *
5 SITWP 00.054  00.320 4.926 *
6 SITWP 00.346  00.357 00.029

7 SITWP 00.599  00.322 00.461 *
8 SIITWP 00.166  00.553 2.337 *
9 SITWP 00.402  00.119 00.702 *
10 SITWP 00.431 00.326 00.244 *
11 SITWP 00.410  00.036 00.911 *
12 SITWP 00.133  00.739 4.558 *
13 SITWP 00.455  00.224 00.507 *
14 SITWP 00.346  00.329 00.047

15 SITWP 00.056  00.329 4.878 *
16 SITWP 00.598  00.341 00.429 *
17 SITWP 00.175  00.461 1.634 *
18 SITWP 00.292  00.373 00.280 *
19 SIIWP 00.533  00.165 00.690 *
20 SITWP 00.242 00.535 1.214 *
21 SITWP 00.490  00.337 00.310 *
22 SITWP 00.268  00.126 00.528 *
23 SITWP 00.118  00.403 2.387 *
24 SITWP 00.253  00.202 00.199 *
25 SITWP 00.628  00.394 00.372 *
26 SITWP 00.306  00.197 00.355 *
27 SITWP 00.400  00.660 00.647 *
28 SITWP 00.292  00.142 00.515 *

Table 5: Kenya rural resident parameter value changes needed to produce the MPEMP.
The first parameter is the average number of cheetah poached per week by Kenya rural
residents. The second set of parameters define the perceived outcome by Kenya rural
residents under the decision option to poach cheetah for cash. Perceived outcomes are will
be arrested for poaching, will be evicted, and no interaction with police.
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Parameter Node CA  MPEMP Change > 10%

value value fraction change?

29 Number Poached 5.994 5.372 00.103 *
30 SITWP 00.039  00.328 7.423 *
31 SITWP 00.521  00.183 00.647 *
32 SITWP 00.439  00.487 00.108 *
33 SITWP 00.330  00.552 00.675 *
34 SITWP 00.296  00.406 00.368 *
35 SITWP 00.373  00.040 00.890 *
36 SIIWP 00.250  00.370 00.474 *
37 SITWP 00.024  00.403 15.802 *
38 SITWP 00.725  00.226 00.687 *
39 SITWP 00.289  00.318 00.103 *
40 SITWP 00.099  00.310 2.137 *
41 SITWP 00.612  00.370 00.394 *
42 SITWP 00.272  00.290 00.068

43 SITWP 00.400  00.352 00.118 *
44 SITWP 00.328  00.356 00.087

45 SITWP 00.450  00.082 00.817 *
46 SITWP 00.167  00.446 1.674 *
47 SIIWP 00.382  00.471 00.233 *
48 SITWP 00.209  00.540 1.586 *
49 SITWP 00.471 00.240 00.491 *
50 SITWP 00.319  00.219 00.313 *
51 SITWP 00.153  00.335 1.190 *
52 SITWP 00.290  00.290 00.000

53 SITWP 00.557  00.374 00.327 *
54 SITWP 00.132  00.320 1.426 *
55 SITWP 00.048  00.252 4.259 *
56 SITWP 00.820  00.427 00.478 *

Table 6: Tanzania rural resident parameter value changes needed to produce the MPEMP.
The first parameter is the average number of cheetah poached per week by Tanzania rural
residents. The second set of parameters define the perceived outcome by Tanzania rural
residents under the decision option to poach cheetah for cash. Perceived outcomes are will
be arrested for poaching, will be evicted, and no interaction with police.

30



679
680
681
682
683
684
685

686
687
688
689
690
691

692
693
694
695
696
697
698
699
700
701
702

703
704
705
706
707
708
709
710
711

5.2.3. The MPEMP'’s political consequences
Because of ¢’s modestly negative value, this MPEMP is expected to
face moderate political resistance. A practical policy for implementing this
MPEMP is to simultaneously (a) visibly increase antipoaching enforcement
in both countries, and (b) communicate such increases to the rural residents
of Kenya and Tanzania (Kegamba et al. 2024), (Nachihangu et al., 2022).
This fitted model and the political insights derived from it, are new.

5.3. The MPEMP compared to other conservation planning tools
5.3.1. Marzan

Marxan helps users select a set of conservation reserves (hereafter, a set
of reserve patches) that satisfy ecological, social, and financial goals. The
Marine Spatial Planning group at the Nature Conservancy gives this overview
of Marxan:

“Marxan is decision support software for designing new reserve
systems, reporting on performance of existing reserve systems,
and developing multiple-use zoning plans. It is the most widely
adopted site selection tool by conservation groups globally. Marxan
is a stand-alone software program that provides decision support
to teams of conservation planners and local experts identifying
efficient areas that combine to satisfy a number of ecological, so-
cial and economic objectives. Given data on species, habitats,
ecosystems and other biodiversity features, Marxan was designed
to minimize the cost of selected sites while meeting all goals (Ma-
rine Spatial Planning (2025)).”

Marxan finds these plans by solving the set covering problem (Liang et al.,
2020), (Watts et al.l 2021). Marxan is strictly spatial in that the tool does not
recognize any temporal component in the spatial data it is given. Also, the
user provides all parameter values and Marxan makes no effort to incorporate
parameter uncertainties into its final solution. The only conservation plans
that Marxan can deliver are maps identifying the location and geometry of
each reserve patch.

Once computed, these reserve patches will presumably be forced onto
landscape residents by authoritarian actions such as the purchase of land or
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the successful lobbying for the conversion of privately-held real estate into
reserve patches.

The MPEMP by comparison, emerges from the political realities sur-
rounding a biodiversity conservation challenge and allows plans to include
non-command-and-control solutions such as community-led changes in lan-
duse on private, non-reserve lands.

Marxan assumes that different sets of reserve patches can be mandated
without requiring community acceptance of the plan. In other words, Marxan
does not have readily-available inputs to represent data-derived political
forces that determine the political feasibility of mandating a set of reserve
patches. On the other hand, the central capability of the MPEMP construc-
tor is its ability to model these forces and their effects on the management
of an ecosystem.

The set covering problem is a classic, simple, linear, binary integer pro-
gramming problem (Liang et al.l [2020). Continuously-valued metrics are not
allowed, nonlinear objective functions are not allowed, and integer variables
with more than two values are not allowed. Marxan runs on a single-CPU
computer. Hence, its ability to solve its set covering problem is, by design,
computationally limited. Unfortunately, the set covering problem is known
to be NP-hard (Liang et al., 2020) meaning that finding a solution to a com-
plex planning problem involving many possible sets of reserve patches can
take many months of wall clock time on a single-CPU computer to reach the
optimal solution.

But real-world reserve-set planning problems usually involve many pos-
sible solutions. This is similar to the set of possible plans for effectively
protecting an ecosystem within a larger political-ecological system — the prob-
lem that the present article solves. In contrast to Marxan, the present article
has tackled this crippling computational-expense roadblock head-on with its
cluster computing-based algorithm, SA-MDAS. SA-MDAS is designed to find
the MPEMP in a practical amount of wall clock time as opposed to the sev-
eral months of wall clock time that Marxan might spend in order to find an
optimal set of reserve patches.

5.5.2. Zonation 5
The Finnish Environment Institute describes Zonation as follows:
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“The Zonation software enables prioritisation analyses of conser-
vation values based on spatial data to support decision-making,
conservation area planning, and the avoidance of negative eco-
logical impacts. It can incorporate a wide range of data, includ-
ing information on uncertainties and connectivity. The analyses
can be highly detailed and extensive, depending on the available
datasets (Finnish Environment Institute, [2025).”

In addition, [Moilanen et al.| (2022) describe the newest version of this spatial
conservation planning tool: Zonation Version 5.

Similar to Marxan, this tool helps the user to identify a set of reserve
patches within a given landscape. Differing from Marxan, however, this
tool does not explicitly solve an optimization problem in order to find a
set of patches that optimally meet a collection of target values on selected
ecological metrics. Rather, Zonation 5 performs a nested, two-level sort on
a large number of spatial units that collectively make up a landscape. This
sorting operation produces a ranked list of reserve patch geometries. Many
assumptions are made about what is ecologically preferred in order to place
enough characteristics on each spatial unit to allow the sorting algorithm to
compute rank-differences between spatial units. As with Marxan, Zonation 5
is strictly spatial in that the tool does not recognize any temporal component
in the spatial data it is given.

Because Zonation 5 employs an efficient sorting algorithm, it can quickly
rank-order a large number of spatial units on a single-CPU computer. Zona-
tion 5 does allow some political forces to impact its solutions by allowing the
user to input a set of “local preferences.” As with Marxan, however, the user
provides all parameter values with Zonation 5 making no effort to incorpo-
rate parameter uncertainties into its final rank-ordering of possible reserve
patch geometries.

As an aside, in actuality, sorting can be cast as an optimization problem
solved with a greedy search algorithm (Bauckhage and Welkel [2022). It is
the greedy nature of the search algorithm that allows Zonation to perform
efficient sorts on a single-CPU computer.
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5.8.8. Assessment

These two tools only deliver a set of reserve patches across a given land-
scape. Neither tool allows, as the MPEMP computation does, a user to
model the political-ecological system that the landscape is a part of — let
alone provide a capability for statistically fitting such a model’s parameters
to a political-ecological data set.

A major drawback that makes these tools insufficient in light of current
political realities is their inability to allow a user to explore alternate con-
servation plans that might involve initiatives that are not a command-and-
control gazzetting of land into reserve patches. Initiatives such as developing
alternate livelihoods, installing wildlife control fencing, increasing antipoach-
ing efforts, relocating animals, shooting marauding elephants, eradicating
invasive plants, donating antipoaching equipment, planting trees, restor-
ing mine tailings areas, compensating farmers for wildlife damages, and the
downgrading, downsizing, and degazettement of protected areas (PADDD)
Albrecht et al.| (2021) — are not part of either tool’s plan repertoire. See the
file emat.dfn in the Supplementary Materials file, MPEMP_constructor.zip
for a complete list of such alternate conservation actions as gleaned from
political-ecological data acquired using the STAR protocol of Haas| (2024b)).

The critical deficiency of both of these tools, however, is that because all
priority weights are user-specified, any plan delivered by either tool, unlike
the MPEMP, lacks a data-derived, real-world measure of the plan’s political
feasibility.

6. Challenges

Before political-ecological modelling of global extinction events can guide
conservation efforts, several challenges need to be overcome. Below is a
priority-ordered list of some of these challenges.

1. Collaboration with the private sector is needed in order to tap their dis-
tributed autonomy; enormous reserves of talent; and enormous reserves
of cash and credit (Haas|, 2022)), (Haas, 2024c), (Haasl 2025).

2. Better political-ecological data sets need to be acquired that, via clus-
ter computer computations, can be used to statistically fit the param-
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eters of these extinction event models. On the political side, observa-
tions need to be acquired on those private political agreements that
often determine the fate of conservation legislation. On the ecological
side, unrestricted and noninvasive monitoring of species abundance is
needed. Currently, such data is often restricted because (a) owners
refuse access to their properties, and/or (b) data managers fear that
poachers will hack into the data’s repository in order to locate wildlife
(Lennox et al., [2020).

. In order to make the statistical fitting of these models feasible to a

wide spectrum of researchers, cluster computing resources need to be
financially accessible to cash-strapped departments of ecology and de-
partments of political science.

One economical alternative to purchasing time on a commercial cluster
computer is to organize some number of in-house computers into a
cluster computer. With the JavaSpaces-based SA-MDAS algorithm,
this is a straightforward four-step build:

(a) Install on an impresario, a dynamic domain name system (DDNS)
(mintdnsl, 2023) in order to give this computer a fixed domain
name so that performers can locate its GigaSpace. A DDNS is
acquired from an internet provider or from a DDNS provider. Fees
can be either none; a fixed monthly charge; or a monthly, usage-
based charge.

(b) Verify that all performers can access the internet.

(c) Install the JAVA Development Kit (free) and the GigaSpaces XAP
(annual lease) on the impresario and all performers.

(d) Compile and run on these computers, the JAVA code exercised in
this article.

. The credibility of political-ecological models in the eyes of their skeptics

needs to be established by meeting Popperian credibility criteria that
are based on frequentist statistical methods (Haas, 2024 — rather than
relying on the lobbying efforts of activist scientists (Whipplel, 2024).
Such rigorous, statistically-based model validation results are needed
to maximize the acceptance by the general public of extinction-event
predictions. This would be in contrast to the acceptance of the decla-
rations made by the authors of climate models concerning the causes
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of climate change. For instance, fewer than 50% of Americans believe
that climate change is driven by anthropogenic forces (EPIC, 2023) —
the central mechanism that is programmed into almost all mainstream
climate models. In order to marshal the necessary support for expen-
sive biodiversity conservation projects, a much higher proportion of
popular support will be needed than what is given to climate change
mitigation policies.

Indeed, climate models do not currently meet rigorous statistical mea-
sures of model credibility. For instance, Michaels (2019)) notes that
recent research indicates that the averaging of predictions across many
different climate models as is routinely reported by the Intergovern-
mental Panel on Climate Change (IPCC), increases prediction errors.
This author suggests that work should focus on developing a single
model that has low prediction errors. And |Jain et al.| (2023)) find sig-
nificant errors in model predictions of observed weather and suggest
more computing resources may be needed to reduce this error.

A literature search failed to find a peer-reviewed article that reports
on a climate model that produces predictions of out-of-sample obser-
vations to any specific, quantified level of accuracy. Nonetheless, such
models are routinely used to justify climate-change mitigation policy
decisions. This use of incompletely validated climate models has only
fueled skepticism about the credibility of climate models. These skep-
tics instead, suspect that climate change policymaking is being driven
by flawed models (Montford} 2022)). Indeed, in a particularly worrisome
passage, Montford mentions the current practice of “tuning” model pa-
rameters to increase a climate model’s agreement with observations.
Such tuning is outside any frequentist-based statistical method of pa-
rameter estimation.

. Group decision making mechanisms need to be better understood. Such

newly-derived mechanisms need to be programmed into each group de-
cision making submodel that runs within a political-ecological model.
Also, computational models need to be developed that, through im-
proved architectures, realistically integrate political and ecological pro-
cesses. Omne such architecture employed herein is that of agent-based
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submodels communicating with each other and with an individual-
based ecosystem submodel through a bulletin board.

6. Increased financial and career support is needed for interdisciplinary
research on the integration of political and ecological processes. Within
academia, this support will be aided when (a) journal editors encourage
the publication of high-quality manuscripts that probe this interface
(Huber-Sannwald, [2025)), (O’Connor et al.l 2021), (Van Bael, 2025);
and (b) departmental committees encourage tenure-track faculty to
publish at this interface (Washbourne et al. 2024). Outside academia,
funding agencies need to seek out and fund high-quality proposals to
build and test models of those political-ecological systems that contain
at-risk species.

7. Conclusions

For purposes of biodiversity conservation, attention needs to focus on
finding politically feasible projects aimed at conserving biodiversity. Earth
is running out of time to save what remains of its biodiversity. MPEMPs
need to be computed and implemented as soon as possible. This article
shows that, thanks to the new optimization algorithm introduced herein,
these computations are now feasible. Indeed, as explained in the Appendix,
an optimization algorithm such as SA-MDAS that scales on the increasing
availability of cluster computer nodes, is currently, the only feasible way to
statistically fit a large political-ecological model to data.

The political-ecological models that will support these projects, can have
their parameters statistically estimated via CA to political-ecological data
sets acquired via the STAR protocol of |[Haas (2024b)). Use of CA to perform
this parameter estimation, allows cognitive theories of decision making to be
represented in the final fitted models.

As per this article’s title, the MPEMP is how a political-ecological model
can help sustain biodiversity. The freely available MPEMP constructor can
be immediately used by an organization to develop and implement politically
feasible and ecologically effective plans for conserving those at-risk species
that they have selected to help preserve.
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Given the current negative trends in biodiversity, one might conclude
that conservation research is futile and hence, should be abandoned. A re-
cent meta-analysis, however, using data from many different conservation
projects, finds that actually, conservation projects have been effective at
stopping or at least slowing the decline of biodiversity across the globe (Ox-
ford, 2024). Given this evidence, there is reason to believe that research
products such as the MPEMP constructor offered in this article, can help
build a conservation science that is capable of guiding successful efforts to
curb the loss of species regardless of their commercial value.

Supplementary material

All source code and input files that constitute the MPEMP constructor
described and exercised in this article are contained in the Supplementary
Material files idsrce.zip (JAVA source code), and MPEMP_constructor.zip
(linux shell scripts, input command files, and data files).
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Appendix: SA-MDAS Details and Comparisons

Continuous variables

All parameters in the political-ecological model studied in Section 4 are
continuous. Hence, a method is needed for applying SA to continuously-
valued variables. Here, the method developed in |Corana et al.| (1987) is used.
One way to specify the length of SA’s Markov chain, i.e., the number of passes
through SA’s inner loop, is to define it to be the size of the neighborhood
surrounding the current solution point (Aarts and Korst, 1989, p. 65), i.e.,
the number of points reachable in one move. Given a small step length, the
number of possible solution space points accessible in one move can become
large.

Corana et al| (1987) take a different approach. They define their ng
constant to be how many times each variable is subjected to trial moves
within one pass through SA’s inner loop. Each variable is subjected to these
ns trials sequentially. Consequently, the value n x n, becomes in-effect, their
chain length. These authors do not attempt to equate their de-facto chain
length definition with the number of possible points accessible in one move
— and instead, simply recommend ng be set to 20. In SA-MDAS, however,
a move always consists of a possible step-change on each and every variable.
Therefore, in SA-MDAS, n, is the number of times that moves are made
within one pass through SA’s inner loop.

As in |Corana et al. (1987), SA-MDAS recomputes each variable’s step
length every pass through the outer loop. Except for initialization, step
length updates in SA-MDAS use equations given in (Corana et al., |1987, p.
267).

The step length’s “varying criterion,” |(Corana et al. (1987) and the step
lengths themselves need to be initialized. This is accomplished by first as-
suming that the median is returned by the uniform random number generator
on the unit interval, i.e., the value 0.5. Then, the initial median step length
is initialized to be the width of the widest set of the n bound constraints
divided by 50 — and then multiplied by this median value. The chain length
is fixed at the value 10 x n, where n, = 3.

The continuous-variable scheme of |(Corana et al.| (1987)) for SA maintains
an approximately 50% acceptance rate at every temperature, t. But this is
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accomplished by progressively making the step length along each variable,
smaller. Hence, as the temperature decreases, the chance that SA will break
into a significantly more optimal subspace becomes small since, as the tem-
perature decreases, a typical move will be close to the currrent point. Hence,
at some temperature, the global search capability of SA will become practi-
cally nonexistent.

Stochastic objective functions

SA-MDAS can handle stochastic objective functions using a method de-
veloped by |Bouttier and Gavra (2019). These authors define a “time” vari-
able, t. To avoid confusion with this article’s notation for “temperature,” u is
used here to refer to this variable. In the Bouttier and Gavra, (2019) method,
instead of evaluating the objective function once when a “score” evaluation is
needed, the function is evaluated n, times at the same point in the solution
space. These n, values are then averaged and returned as the score value at
that point. The size of n, increases as u (time) increases.

The value of u is updated every pass through the outer loop with u = u+(
where ¢ is a realization from the Exponential(1.0) distribution. Because
the expected value of this distribution is 1.0, this update is, on average,
adding the value 1.0 to u every pass through the outer loop. Addition of
this stochastic term rather than the addition of the fixed value 1.0 to u every
pass through the outer loop is necessary to allow the chain of SA-generated
solutions to be modeled as a continuous-time Markov process. This is the
model that is assumed in the proof of their method’s convergence.

Further, their method requires a function mapping u to n,. One such
function that is used by the authors in their numerical experiments is

ny = f(u) = |u] (5)

where |[.] is the floor function.

In Step (g) of the algorithm in Section 3.4, Bouttier and Gavra| (2019)
have the temperature, t decreased by some function of u such as ¢t = 1/u. But
doing so ignores the standard deviation of the objective function estimated
after each pass through SA’s inner loop. Hence, SA-MDAS employs the|Aarts
and Korst| (1989) algorithm to decrement t for both deterministic objective
functions and for stochastic objective functions.
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Inter-performer coupling

By executing its MPE Step, SA-MDAS couples the performers to each
other by allowing them to always begin their respective chains at the current
best solution that was found across all performers during the last outer loop
iteration.

Message-passing overhead

Spreading tasks across a cluster of performers as is done in SA-MDAS is
known to have some amount of latency (Pichetti et al., 2024). Here, such
latency is viewed as a minor issue because the optimization problem’s ob-
jective function, being composed of interacting agent/individual stochastic
submodels, is computationally expensive to evaluate. Hence, most of the
compute time needed to estimate the parameters of the political-ecological
model will typically be taken by objective function evaluations rather than
by inter-node messaging.

To verify this hunch, an experiment was conducted using Bukin’s F4 func-
tion. This function takes very little compute time. SA-MDAS was run on
a Windows™ laptop computer with 32 GB of memory running at 1.2 GHz.
Doing so resulted in SA-MDAS requiring 1.62 seconds to compute 192K eval-
uations of Bukin’s F4 function. SA-MDAS was next run on the TSCC to
perform 1,400 evaluations of this same function using two performers com-
municating with the impresario through a GigaSpace. Wall clock time for
these evaluations was seven minutes. Almost all of this time was devoted to
inter-node message-passing. These values suggest that a GigaSpaces imple-
mentation of SA-MDAS requires about 0.3 seconds to complete a round-trip,
i.e., the posting of a task to the GigaSpace, a performer down-loading the
task, uploading the result, and the impresario taking the result off of the
GigaSpace. Note that a round-trip does not include the objective function’s
evaluation.

Let  be the number of minutes needed to evaluate the objective func-
tion. Assume a 100-node cluster computer is available. Then, the break-even
function evaluation time can be estimated by solving for z in:

192000z = 1920002/100 + 192000(0.3,/60) (6)
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The left side of [f] is the time needed to compute 192K function evaluations
on a single-processor computer, while the right side is the time needed to
compute the same number of evaluations on a cluster computer running 100
nodes in parallel. Equation |§] can be written as 0.99z = 0.3/60, i.e., z is
approximately equal to the roundtrip time. Hence, for expensive functions,
cluster computing can speed-up black-box optimization problems even when
round-trip times are as large as 0.3 seconds. And further, this speed-up
increases as the objective function’s evaluation time increases.

Evaluating the political-ecological model’s CA objective function in the
example of Section 4, requires about 15 seconds. Hence, an optimization
algorithm that scales on the increasing availability of cluster computer nodes,
is currently, the only feasible way to statistically fit a large political-ecological
model to data.

Comparisons with other optimization algorithms

The optimization problem of least sum-of-squares possesses a very smooth,
unimodal objective function. Using only phase one (SA), SA-MDAS needed
3,780 evaluations to solve a 27-variable least sum-of-squares problem. Whereas
a Hooke and Jeeves algorithm (Haas, [2020) needed 1,725 evaluations, and a
Random Search algorithm (Schumer and Steiglitz| (1968)) needed 1,568 eval-
uations. These latter two algorithms are local, nonstochastic, and do not
scale well as neither can make use of more than one compute node.

Similar to PACSA, SA-MDAS phase one mainly uses parallel processing
to store the end result of many chains in order to increase the chance that it
will find the global minimum point — not necessarily to speed up the solution
time (Gongalves-e-Silva et al., 2018). In other words, the focus of SA-MDAS
phase one is to find the global minimum, not to speed up the solution. Even
with this caveat, SA-MDAS phase one takes only about twice as long to solve
a 27-variable least-squares problem as do two strictly local-search algorithms.

SA performs global search through decisions to probabilistically accept
uphill moves (worse objective function values) rather than delineating a par-
titioning of the solution space first and then evaluating the function at some
point in each partition as is done for example, in |Jia et al.| (2024). Such a
partitioning-then-evaluation approach to global optimization results in many
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objective function evaluations regardless of whether they end up being uphill
or downhill values. Further, there is an implicit assumption that all points
within a partition have function values that are similar to the value at the
single point actually evaluated in that partition.

MDAS, being more focused on local search than SA, employs many per-
formers to

1. Perform limited global search (up to the m dimensions (variables) being
searched simultaneously), and

2. Produce a speedup from the sequential Hooke and Jeeves algorithm
by evaluating the objective function at all m-dimensions-ahead search
points simultaneously rather than sequentially.
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