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Models to Sustain Biodiversity

Abstract

Because of the �nality of a species' global extinction, there is a need to focus
on stopping such extinction events from happening. The way forward is to
�nd and implement politically feasible and ecologically e�ective projects that
head o� extinction events. This article delivers a software toolkit that imple-
ments one way to do this. This toolkit provides an organization the means
to (1) build a political-ecological model; (2) �t this model to a political-
ecological data set; and �nally, (3) use this model to compute the most prac-
tical ecosystem management plan (MPEMP). This model-based approach to
�rst understanding the political issues surrounding the conservation of a par-
ticular species and then second, �nding a conservation plan that works with
these political realities � is hamstrung by the expensive computations needed
to �rst, �t a political-ecological model to data and then second, compute the
MPEMP from this �tted model. Therefore, a new optimization algorithm
is presented that overcomes this challenge when run on either a commer-
cial or home-grown cluster computer. This new algorithm �nds the global
solution to an optimization problem characterized by constraints and a black-
box, stochastic objective function. This toolkit is illustrated by �nding the
MPEMP for conserving the cheetah (Acinonyx jubatus) population across
Kenya and Tanzania.

Keywords: extinction crisis, biodiversity conservation, political-ecological
models, model credibility, ecosystem management, robust statistical
estimators, optimization algorithms, high performance computing
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NGO: Nongovernmental Organization6

PACSA: Parallel Asynchronous Coupled Simulated Annealing7

SA: Simulated Annealing8

SA-MDAS: Simulated Annealing � Multiple Dimensions Ahead Search9

SDE: Stochastic Di�erential Equation10
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1. Introduction12

Earth is in the midst of an extinction crisis (Torres-Romero et al., 2024),13

(Garber et al., 2024) with many species becoming globally extinct every year14

(Verones et al., 2022). Global extinction of a species is irreversible. Assuming15

that the end goal of environmental and ecological conservation e�orts is to16

sustain ecosystems in states that are close to those circa 2025, it can be argued17

that conservation e�orts that directly contribute to stemming irreversible18

ecosystem state changes should be given the highest priority both politically19

and �nancially. To support these e�orts, this article argues that the highest20

priority should be given to (a) developing political-ecological models that can21

credibly gauge likelihoods of global extinction events; and (b) developing22

ecosystem management plans based on these models that can reduce these23

likelihoods.24

This article argues that biodiversity conservation e�orts in particular,25

should focus on understanding the political-ecological processes that lead to26

global extinction events so that politically feasible and ecologically e�ective27

ecosystem management plans can be identi�ed that, when implemented, have28

the greatest chance of stopping these events from happening.29

This article describes a free software toolkit for developing such plans.30

Armed with this toolkit, an organization �rst statistically estimates the pa-31

rameter values of a political-ecological model. They then use this �tted model32

to compute the most practical ecosystem management plan (MPEMP) (Haas,33

2011, Chapter 4). Accordingly, this toolkit is referred to here as theMPEMP34

constructor.35

This article takes a broad view of what constitutes biodiversity to include36

species that may not have any commercial value but are listed as Vulnerable37

or Endangered on the IUCN Red List (Panwar et al., 2023), (Testa et al.,38
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2025), (Tobias et al., 2025). Such species include many terrestrial mammals,39

marine mammals, �sh, and many plants.40

The private sector, although paying lip service to the conservation of such41

species, actually has a strong economic interest in biodiversity conservation42

that is focused mainly on the preservation of potentially pro�table genetic re-43

sources. The commercial value of these resources was approximately USD4444

trillion in 2022 (Medlong et al., 2022). The total budget of NGOs engaged45

in preserving endangered species by comparison, is in the neighborhood of46

USD12 billion (Wan, 2023). The e�orts of the many professionals engaged in47

work to curb biodiversity loss, although laudable, is dwarfed by the e�orts in48

the private sector to pro�t from biodiversity resources. In other words, the49

big money is being spent on preserving species that have high commercial50

potential rather than on species that, in-part, de�ne the word, �wild.�51

Some e�orts are being made, however, to encourage more private sector52

spending on species who have no commercial value but do have (1) existence53

value, (2) bequest value, or (3) ecosystem function value, i.e., the species54

performs important ecosystem-support functions. Existence value is the per-55

ceived value of knowing that a species exists, and bequest value is the per-56

ceived value of conserving a species for future generations (Ressurreição et57

al., 2012).58

Beverdam et al. (2025) for example, call for a �blending� of private and59

public sector funds to conserve species that are not commercially valuable.60

An example of this type of �nancing mentioned by these authors is the so-61

called �Rhino Bond� that targets the conservation of the commercially val-62

ueless black rhinocerous (Diceros bicornis) in Africa.63

1.1. The way forward64

The concept that this article is o�ering a realization of, is a toolkit that65

can �nd conservation plans that are ecologically e�ective and politically fea-66

sible to implement. After describing how this concept is realized in software,67

this article gives a proof of this concept by �nding a management plan for the68

East African cheetah that requires minimal changes to the political beliefs of69

those groups surrounding this biodiversity conservation challenge while pre-70

dicting that the cheetah population will remain viable through the planning71

horizon.72
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As an example of this article's approach to biodiversity conservation, Haas73

and Ferreira (2017) build an agent/individual based model of the political-74

ecological system that surrounds rhinoceros (Ceratotherium simum) poaching75

in South Africa. These authors simulate several management options and76

predict that under current management policies, rhinos in South Africa will77

become extinct around the year 2036.78

Such models, however, are in their infancy but need to quickly mature be-79

cause at present extinction rates, many species including most large mammals80

will be globally extinct by about 2055 (Ceballos et al. , 2015). In other words,81

if present trends continue, a signi�cant proportion of the earth's species will82

soon be gone due mainly to the activities of the most recent (circa 2025)83

several generations of humans.84

This article gives a tested toolkit, namely, the MPEMP constructor that85

can be used to (a) model such political-ecological systems; and (b) based86

on such models, compute ecosystem management plans that, when imple-87

mented, fend o� species extinction events. The MPEMP constructor stream-88

lines the construction of an integrated model composed of agent-based sub-89

models of political processes that interact with an individual-based popula-90

tion dynamics submodel of an at-risk species.91

What mechanisms of biodiversity loss would such models represent? Habi-92

tat loss is often pointed to as the principal driver of global biodiversity loss93

(Hanski, 2011). But recently, one study could �nd no statistical di�erence94

between loss of habitat and direct exploitation, i.e., intentional harvesting95

of wildlife either legally or illegally (Jaureguiberry et al., 2022). Illegal har-96

vesting and illegal trading of wildlife is referred to as wildlife tra�cking.97

The scale of exploitation-curbing biodiversity conservation projects that is98

needed to slow the globe's ongoing biodiversity losses, is much larger than99

the sum total of currently active projects. To help address this disparity,100

the MPEMP constructor is engineered to focus on the modeling of direct101

exploitation drivers of biodiversity loss.102

Recently, the literature has called for a more holistic view of biodiversity103

conservation rather than a focus on single species preservation (Tobias et al.,104

2025). This view, called �process-based� by Tobias et al. (2025) argues that105

maintaining ecological processes that drive critical ecosystem functioning,106
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should be the primary goal of biodiversity conservation initiatives. These107

processes include adaptation, gene �ow, dispersal, and trophic interactions.108

Acknowledging that the goal of avoiding the extinction of species that109

have evolved over millions of years is not to be abandoned, Tobias et al.110

(2025) call for a synthesis of species-centric and process-based approaches to111

biodiversity conservation:112

�We advocate integration and communication across the two pri-113

mary cultures of conservation�species-centric and process-based�as114

the most e�ective progress will occur when these two missions op-115

erate in tandem and synergistically ((Tobias et al., 2025)).�116

Process-based approaches to biodiversity conservation, however, have yet to117

wrestle with direct exploitation e�ects on an ecosystem's functioning.118

Such integration is straightforward within the methods detailed in this119

article. For instance, functional diversity (FD) is one way to describe the120

healthy functioning of an ecosystem. FD can be quanti�ed from remotely-121

sensed NDVI data (Li et al., 2025). And, trophic transfer between predators122

and their prey can be quanti�ed with the AB ratio reviewed in Carroll et al.123

(2019). These two metrics can easily be added to the species abundance ob-124

jective function employed in this article to arrive at an analysis and planning125

work�ow that integrates species-centric goals and process-based goals.126

The MPEMP maximally increases the probability of a species' survival127

while requiring the least change in the beliefs held by identi�able groups128

of humans in those countries that host a selected at-risk species. Indeed,129

according to Haas (2024c), any project that is intended to sustain biodiversity130

needs to have its MPEMP computed so that the conservation project can131

either be modi�ed to enhance its conservation e�ectiveness � or abandoned132

altogether and replaced by a project that implements the MPEMP. The133

MPEMP constructor guides the user through this MPEMP computation.134

An organization would use the MPEMP constructor to complete the fol-135

lowing �ve steps.136

1. Acquire a data set that pertains to the political-ecological system sur-137

rounding a selected at-risk species.138

2. Create a political-ecological model of this system.139
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3. Compute statistical estimates of this model's parameters.140

4. Display and assess the political-ecological actions generated by this141

�tted model.142

5. Compute the MPEMP from this �tted model and implement it.143

This �ve-step procedure has application in a business-oriented approach to144

conserving a selected at-risk species (Haas, 2022), (Haas, 2024c). Brie�y,145

revenue from a commercial o�ering funds a biodiversity project. This project146

operationalizes the MPEMP that has been computed for that species and147

the political-ecological system that hosts it.148

This article proceeds as follows. A description is given in Section 2 of149

this interacting in�uence diagramsmodelling architecture (Haas, 2011, Chap-150

ter 2). Then, as an example, this architecture is used to build a model of151

the political-ecological system that hosts the East African cheetah (Acinonyx152

jubatus) population. A new cluster computer-based optimization algorithm153

is presented in Section 3 that has developed out of proposals advanced by154

Haas (2024). The above model is �tted via this new algorithm to a political-155

ecological actions history data set in Section 4. Statistical estimates of this156

model's parameter values found via Consistency Analysis (CA) (Haas, 2011,157

Chapter 3) are computed by running the new optimization algorithm on the158

Triton Shared Computing Cluster (TSCC) at the San Diego Supercomputer159

Center (San Diego Supercomputer Center, 2025). In Section 5, this statis-160

tically estimated model is used to compute the associated MPEMP. Section161

6 contains a list of challenges that need to be overcome before such models162

can be widely used to identify extinction-avoiding management plans. Some163

conclusions are reached in Section 7.164

2. An Integrated Political-Ecological Model165

2.1. Why do submodels need to be integrated?166

Given a model composed of political submodels and an ecosystem sub-167

model, if actions that are generated by political submodels do not impact the168

ecosystem submodel at model-generated time points � and ecosystem sub-169

models actions do not in-turn, a�ect these political submodels, then feedback170

loops between political processes and ecological processes cannot emerge.171
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For instance, if a climate model is exogenously set to a schedule of reduc-172

tions in carbon emissions forcing, there is no mechanism for modelling the173

vicissitudes of political support for climate policy. Such vicissitude might take174

the form of a sequence of governmental administrations alternately support-175

ing and then not supporting climate change mitigation policies. The jagged176

time series of carbon emissions that results from this support-nonsupport177

policy record cannot be realistically simulated unless this sequence of dif-178

ferent administrations and the e�ects of their actions on earth's climate is179

represented in the simulation model. Hence, there needs to be an integrated180

model of political processes interacting with ecological processes. In this ar-181

ticle, the main ecological process that needs to be modeled is the population182

dynamics of an at-risk species.183

2.2. Advantages of an individual-based model of an at-risk species184

As Netz et al. (2022) note,185

�To allow for mathematical analysis, models of predator�prey co-186

evolution are often coarse-grained, focussing on population-level187

processes and largely neglecting individual-level behaviour. As188

selection is acting on individual-level properties, we here present189

a more mechanistic approach: an individual-based simulation190

model for the coevolution of predators and prey on a �ne-grained191

resource landscape, where features relevant for ecology (like changes192

in local densities) and evolution (like di�erences in survival and193

reproduction) emerge naturally from interactions between indi-194

viduals� (Netz et al., 2022).195

2.3. Example: The East African cheetah population196

The cheetah is listed as Vulnerable on the IUCN Red list and as Endan-197

gered by the Namibian government (Milloway, 2025). World Population198

(2025) reports 938 cheetah in Tanzania and 715 in Kenya. These two coun-199

tries share a border and hence have the potential of interacting with each200

other politically. Therefore, as an example, a political-ecological model is201

built of the cheetah-hosting political-ecological system enclosed by these two202

countries. This model consists of submodels of several groups that a�ect203
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the cheetah population, and an ecosystem submodel of East African chee-204

tah population dynamics. All of these submodels interact with each other205

through time.206

This agent/individual-based political-ecological model of the cheetah-207

hosting ecosystem contained within Kenya and Tanzania, is new.208

2.3.1. Submodels interact through a bulletin board209

At each time step, each group submodel and the ecosystem submodel210

read actions directed against themselves from a bulletin board. Conditional211

on a read-in input action, a group submodel computes the expected value of212

overall goal attainment that they believe they will receive if they implement a213

particular action-target combination. After making this computation for all214

action-target combinations in their repertoire, they post to the bulletin board215

the combination that has the highest expected overall goal attainment. The216

Ecosystem Management Actions Taxonomy (EMAT) (Haas, 2024b) dictates217

what actions a submodel recognizes and what it holds in its repertoire of218

output actions.219

The ecosystem submodel reacts to actions directed against it by adjusting220

its output of cheetah and prey abundance across time.221

2.3.2. Group submodels222

Submodels represent Kenya's presidential o�ce, the Kenya Wildlife Ser-223

vice, the rural residents of Kenya, and the pastoralists of Kenya. Simi-224

lar submodels are constructed for Tanzania. A ninth group submodel is225

constructed of a conservation-focused nongovernmental organization (NGO)226

that runs conservation projects in both of these countries. Haas (2011, Chap-227

ter 2), Haas and Ferreira (2017), and Haas (2025) detail the cognitive theory228

and causal �ow that these submodels use to decide what action to implement229

based on their beliefs and those actions that have been directed against them230

(called input actions). These group decision making submodels make deci-231

sions that they believe will further their own set of goals without regard to the232

goals of other groups and, except for the wildlife protection agency groups,233

without regard to what e�ects their actions might have on the ecosystem or234

the abundance of any particular species.235
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2.3.3. Cheetah-hosting ecosystem submodel236

The ecosystem submodel tracks the dynamics of the trans-Kenya-Tanzania237

cheetah population (abundance through time). This submodel interacts with238

the above rural resident and pastoralist group submodels. Cheetah are indi-239

vidually modeled following the individual-based model (IBM) paradigm. For240

simplicity, however, this IBM interacts with a stochastic di�erential equation241

(SDE) submodel of cheetah prey such as Thomson's gazelle (Gazella thom-242

soni) (Fitzgibbon, 1990). Both the cheetah IBM and the herbivore SDE243

represent population dynamics stochastically.244

This synthetic predator-prey submodel is new and extends a model de-245

scribed in Kimbrell and Holt (2005).246

Parameterization of this submodel follows a set of data-based values re-247

ported in Kelly et al. (1998):248

�Data are presented on the demography and reproductive suc-249

cess of cheetahs living on the Serengeti Plains, Tanzania over a250

25-year period. Average age at independence was 17.1 months,251

females gave birth to their �rst litter at approximately 2.4 years252

old, interbirth interval was 20.1 months, and average litter size253

at independence was 2.1 cubs. Females who survived to inde-254

pendence lived on average 6.2 years while minimum male average255

longevity was 2.8 years for those born in the study area and 5.3256

years for immigrants� (Kelly et al., 1998).257

Working from this information, Table 1 contains the parameter values used258

in the cheetah IBM and the prey SDE.259
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Parameter Value
Cheetah

Life expectancy 6.2 (females); 2.8 (males)
Age at maturity 1.42
Sexual maturity 2.4 (females)
Interbirth interval 1.675

Herbivores
Initial abundance (minor poaching) 2250
(moderate poaching) 4500
(severe poaching) 8750
Birth rate − death rate (minor poaching) -0.003
(moderate poaching) -0.014
(severe poaching) -0.017
White noise multiplier (minor poaching) 0.001
(moderate poaching) 0.001
(severe poaching) 0.001

Table 1: Ecosystem submodel parameter hypothesis values. Cheetah IBM parameter
values are derived from Kelly et al. (1998). The temporal unit is years. The submodel
uses only the averaged cheetah life expectancy (4.5 years). Submodel output of herbivore
abundance depicts a negative trend through time that is in�uenced by the amount of
herbivore poaching.

A data �le is created based on estimated cheetah abundance reported in260

World Population (2025).261

3. A New Optimization Algorithm262

A new optimization algorithm is introduced herein that combines Simu-263

lated Annealing (SA) (Corana et al., 1987) and Multiple Dimensions Ahead264

Search (MDAS) (Haas, 2020). This new algorithm is called Constrained265

Stochastic Synchronous Coupled Simulated Annealing � MDAS (SA-MDAS).266

3.1. Background267

Consider an optimization problem wherein an objective function in n268

dimensions (hereafter, variables) is to beminimized. A black-box optimization269

algorithm can handle all types of deterministic objective functions without270
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assuming anything about their smoothness or presence of discontinuities. To-271

date, however, there has been little work on the development of algorithms272

that can optimize a noisy (hereafter, stochastic) black-box objective function.273

As reviewed in Haas (2024), one algorithm that is capable of �nding274

the global solution to a deterministic black-box objective function is Parallel275

Asynchronous Coupled Simulated Annealing (PACSA) of Gonçalves-e-Silva276

et al. (2018). This algorithm however, does not recognize constraints and277

is not designed for stochastic objective functions. Haas (2024) proposes for278

future work, the development of a general purpose black-box optimization279

algorithm that would handle bound constraints and, by incorporating the280

algorithm of Branke et al. (2008) into PACSA, stochastic objective func-281

tions. This envisioned program would compute statistical estimates of the282

parameters of a political-ecological model. As explained next, however, a283

combination of theory and computational experience has led to the devel-284

opment of an algorithm that is di�erent than the one envisioned in Haas285

(2024).286

One �nal background note: In the eighteenth century, the person who287

organized an opera production was referred to as an impresario. The in-288

dividuals who performed the opera be they singers, dancers, instrumental-289

ists or conductors, were (and are) referred to as performers (Holmes, 1994).290

These terms are used here to refer to di�erent roles given by an optimiza-291

tion algorithm to di�erent compute nodes who collectively, make up a cluster292

computer (Werstein et al., 2006).293

3.2. Rationale for a new algorithm294

In SA-MDAS, an impresario posts tasks to a JavaSpace (Haas, 2020)295

for performers to take and complete. Once completed, a performer posts296

a task's results back to the JavaSpace. The impresario then takes these297

results from the JavaSpace and uses them to decide where next to search.298

Here, a JavaSpace is implemented via the GigaSpaces XAP (Ciatto et al.,299

2020). SA-MDAS is implemented in the JAVA language because JAVA is300

(a) computationally e�cient; (b) easily parallelized; and (c) easy to read and301

hence, easy to maintain (Haas, 2020).302

When the cooling schedule of Aarts and Korst (1989) is employed within303

PACSA, computational experience has shown that the use of equation (1) in304
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Gonçalves-e-Silva et al. (2018) causes the maximum accepted function value305

term to become large as iterations increase. This happens because some of306

the performers begin to return poor (large) objective function values when307

their solution chains enter suboptimal subspaces. This increased value of308

the maximum-function term causes the acceptance probability to become309

small � causing progress towards an optimal solution to essentially stop. For310

this reason, the asynchronous inter-performer coupling scheme developed in311

Gonçalves-e-Silva et al. (2018) is not used in SA-MDAS.312

Regarding stochastic objective functions, Bouttier and Gavra (2019) pro-313

vide a convergence proof for their approach to handling such functions within314

an SA optimization algorithm. For this reason, the Bouttier and Gavra315

(2019) approach to handling stochastic objective functions is employed in316

SA-MDAS rather than the approach taken by Branke et al. (2008).317

3.3. Algorithm summary318

SA-MDAS uses both SA and MDAS to solve an optimization problem319

that has a (possibly) stochastic black box objective function and continuous320

variables that are bound-constrained. Implicit constraints are also accom-321

modated. To ensure �nite-time convergence, SA-MDAS employs the cooling322

schedule of Aarts and Korst (1989, chapter 4).323

SA-MDAS employs many performers in order to both increase the chance324

that a global solution is found, and to reduce the time it takes to �nd it, called325

the wall clock time (Jiang and Singh, 2010). This is accomplished in-part326

through a new method developed herein called Multiple Periodic Exchange327

(MPE) � a scheme similar to the class of parallel SA algorithms dubbed328

periodic exchange schemes by Lee and Lee (1996).329

A well-known characteristic of SA is its slow rate of convergence (Guilmeau330

et al., 2021). This drawback is addressed in SA-MDAS by switching the331

search algorithm from a parallel SA-like search algorithm to a parallel Hooke-332

Jeeves-like search algorithm namely, MDAS.333

The result of this two-phase architecture (Ferreiro et al., 2019) is an algo-334

rithm that takes advantage of SA's global search capability enhanced through335

cluster computing � but that avoids SA's proclivity for slow convergence by336

switching to an e�cient local search algorithm (MDAS) that also leverages337
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a cluster computing environment. The switch happens only after signi�cant338

e�ort has been directed towards �nding a subspace that has a high likelihood339

of containing the global minimum. Speci�cally, this switch is delayed until340

the SA step length along any variable becomes so small that the likelihood341

of a move into a radically di�erent subspace also becomes small.342

The Appendix contains details of how SA-MDAS handles continuous vari-343

ables, stochastic objective functions, and messaging between compute nodes.344

This Appendix also contains comparisons of SA-MDAS with other optimiza-345

tion algorithms.346

3.4. Algorithm347

1. Global search phase:348

(a) Set values for ns (see Appendix), and the chain length. Also,349

�nd initial values for each variable's step length, and the control350

parameter t (�temperature�). Initialize this latter parameter so351

that the percentage of moves accepted is between 70 and 90. Run352

this task on the impresario compute node alone.353

(b) Within SA's inner loop, start each of m performer nodes at the354

same initial solution.355

(c) Run these performers simultaneously but independently over one356

Markov chain.357

(d) Always accept solutions that deliver a score value that is smaller358

than current_value. Accept other solutions with probability359

exp {−(trial_value− current_value)/t} . (1)

(e) Block until all performers have �nished their respective chains.360

(f) Update the sample size used to compute the average value of a361

stochastic objective function. Also update each variable's step362

length.363

(g) Update t via the rule developed in Aarts and Korst (1989, Chap-364

ter 4).365

(h) Return if a solution has been found such that the score function366

has been reduced to 90% of its initial value. Otherwise, continue367

to Step i.368
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(i) Execute MPE by reinitializing every performer with the solution369

that gave the current smallest score value.370

(j) Go to Step c.371

2. Local search phase:372

(a) After the SA subalgorithm has returned, use the returned solution373

as the starting solution in an MDAS run. Set the MDAS algorithm374

to search forward three variables at a time.375

(b) Run MDAS to convergence and then stop.376

3.5. SA-MDAS performance on analytic objective functions377

Haas (2020) reports that MDAS correctly solves Bukin's F4 function378

(Mishra, 2006). Using ns = 60 (Corana et al., 1987), a chain length of379

10, and 10 performers, SA-MDAS �nds the global minimum solution to380

Bukin's F4 function in 12,353 objective function evaluations. SA-MDAS381

fails to �nd the global minimum solution for Bukin's F6 function. But when382

the global search phase of SA-MDAS is allowed to run to convergence rather383

than switching to local search, the global minimum of this function is found384

after 4,716,030 function evaluations. Bukin's F4 function has a pathological385

number of non-global minima (Hasanzadeh et al., 2022) � as does Bukin's386

F6 function. Clearly, SA-MDAS is capable of �nding the global minimum387

of a highly multi-modal function when nearly unlimited computing power is388

available.389

Real-world functions are not necessarily as pathological as Bukin's F6.390

Hence, the performance of SA-MDAS on Bukin's F4 gives gives some credence391

to the idea that it can �nd nearly optimal solutions to real-world conservation392

optimization problems. To support this supposition, SA-MDAS is assessed in393

the next Section by seeing how well it statistically estimates the parameters394

of a political-ecological model built to represent a real world conservation395

challenge.396

4. Statistical Estimation of a Political-Ecological Model397

4.1. Overview of the CA estimator398

The CA estimator of Haas (2011, Chapter 3) produces a set of consis-399

tent parameter values such that model output balances agreement with data400
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versus agreement with cognitive theories of decision making. To do this, an401

objective function is de�ned to be the priority-weighted sum of standardized402

measures of the agreement with a data set (gS), and the agreement with403

the model's joint probability distribution across its stochastic nodes (here-404

after, distribution) under hypothesis parameter values (gH). The value of405

ch ∈ (0, 1) is the relative priority given to having the consistent (estimated)406

model's distribution agree with the one speci�ed by the hypothesis parameter407

values � versus agreeing with the data (here, an observed actions history):408

gCA = (ch)gH + (1− ch)gS.409

When ch is 0, CA becomes a frequentist statistical estimator. When ch410

is 1, CA �nds parameter values that result in the model maximally agreeing411

with both decision making theory and with ecological theory that collectively,412

dictate how the political-ecological system ought to behave.413

CA �ts a model in two stages. Stage I consists of �nding parameter values414

so that the model matches as many observed actions as possible. Then, this415

Stage I percentage of action-agreement (match fraction) is computed. Next,416

Stage II adjusts these Stage I parameter values until the model's distribution417

is as close as possible to the hypothesis distribution while maintaining Stage418

I's match fraction. The idea behind this two-stage approach is to minimize419

the occurrence of jump discontinuities (Schober and Prestin, 2023) caused by420

one or more group submodels switching to di�erent action-target combina-421

tions due to a small change in a parameter's value as the algorithm evaluates422

the objective function at di�erent points in the solution space.423

4.2. Objective function424

Because of the above-mentioned potential for jump discontinuities, it is425

important to not accept any trial moves that reduce the match fraction from426

that achieved in Stage I. This agreement is enforced by adding a large penalty427

to the objective function if a move causes a reduction in the agreement with428

the observed actions history. Use of such a penalty function to, in-e�ect, rep-429

resent an implicit constraint, works in SA-MDAS because numerical insta-430

bilities that might be caused by explosive numerical derivative computations431

cannot happen because SA-MDAS does not compute such derivatives.432

Stage II uses a stochastic agreement function for gH that is the negative433

of the Hellinger distance between the consistent and hypothesis distributions.434
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Letting P (P = i) = pi (and P (Q = i) = qi), for two discrete distributions,435

this distance is436

H(P,Q) =

√√√√1

2

d∑
i=1

(
√
pi −

√
qi)2 (2)

where d is the number of discrete values that the random variable P (and Q)437

can take on (Suresh, 2021).438

4.3. Stage I's action-matching algorithm439

Stage I �nds starting parameter values by executing two subalgorithms.440

The �rst subalgorithm entails the sequential matching of action-target com-441

binations with those observed. This subalgorithm is as follows.442

1. At each time point, check the match between the observed action-target443

combination and the one generated by the group submodel. If they do444

not match, replace the submodel's action-target combination with that445

observed.446

2. If this replacement causes the overall fraction of matches to become447

smaller, reject this replacement.448

3. If the end-time has not been reached, go to the next group submodel449

or next time point. Otherwise, write this desired actions history to a450

�le and exit.451

The second subalgorithm proceeds by adjusting submodel parameters un-452

til model output matches as many action-target combinations in the desired453

actions history as possible � regardless of its agreement with the hypothesis454

distribution.455

4.4. Results456

SA-MDAS is used to statistically estimate parameter values of the political-457

ecological model of East African cheetah tra�cking as follows.458

4.4.1. Actions history459

The STAR protocol of Haas (2024b) is used to collect actions reported in460

online press sources concerning cheetah management in Kenya and Tanzania.461

Doing so yields 105 actions over the time period 2019 through May 2025462

(Table 2).463
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Date Actor Action Target(s)

2019.55 kenpas starve_due_to_drought kenpas
2019.71 kenrr poach_for_food three,kenpres,kenepa,ngo
2019.99 tanrr poach_for_food one,cheetaheco
2021.20 ngo fund_rural_development_project one,chetaheco
2022.17 kenepa translocate_animals one,chetaheco
2022.34 tanrr plant_trees one,cheetaheco
2023.67 kenrr poach_for_cash one,chetaheco
2023.73 kenrr poach_for_food three,kenpres,kenepa,ngo
2024.49 kenrr poach_for_cash one,chetaheco
2025.18 kenrr poach_for_cash one,chetaheco

Table 2: Selected political-ecological actions extracted from online sources with the STAR
protocol of Haas (2024b)

.
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4.4.2. Model �tting464

The parameters that determine how likely Kenya rural residents and Tan-465

zania rural residents think they will be arrested after they poach cheetah for466

cash are adjusted so that the model's output agrees with the observed ac-467

tions history while exhibiting a joint probability distribution across its nodes468

that maximally agrees with the distribution de�ned to represent theoretical469

propositions about these beliefs. Adding-in parameters to represent Kenya470

pastoralist and Tanzania pastoralist beliefs is planned for future work.471

Here, the hypothesis distribution values of these parameters represent472

the theory that a typical rural resident believes there is little chance they473

will have any interaction with police after they poach a cheetah for cash.474

Equal priority is given to agreement with the hypothesis distribution versus475

agreement with observations (ch = 0.5).476

This CA is implemented as a 54-variable optimization problem. These477

variables are the parameters that determine the Scenario Imminent Interac-478

tion with Police (SIIWP) node in the Kenya rural resident submodel and the479

Tanzania rural resident submodel under the conditioning event that a rural480

resident decides to implement the output action, poach cheetah for cash.481

SA-MDAS employed three performers with each performer accessing 10482

threads when performing a parallel Monte Carlo simulation. Each such simu-483

lation required 1000 simulated realizations of a submodel's stochastic nodes.484

Such a simulation was run whenever a submodel received a new input action-485

target combination at some step in the time interval that the model was run486

over.487

Because parameters in the ecosystem submodel were not being adjusted,488

in order to reduce wall clock time, ecosystem submodel calculations were489

turned o� during this run of the SA-MDAS algorithm. Doing so reduced the490

objective function's evaluation time from 44 seconds to 15 seconds.491

Due to a modest computing budget, the SA-MDAS algorithm was allowed492

to run for up to 3000 function evaluations during each phase. The run's493

wall clock time was 6.6 hours. Phase one converged after 2991 function494

evaluations, and phase two was terminated after completing 3043 function495

evaluations due to exceeding the maximum number of function evaluations.496

After the run had �nished, the algorithm had increased the value of gCA by497
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23.3% (Table 3).498

At this solution, ecosystem computations were turned on and the ob-499

jective function computed one �nal time (Table 4). Including the ecosystem500

submodel de�ned by its hypothesis distribution parameter values signi�cantly501

a�ects the model's overall �t as quanti�ed by gCA (Table 4).502

Agreement measure Symbol Initial Consistent Percent

value value increase

Agreement with observed g
(Grp)
S 0.491 0.528 0.075

actions history (match

fraction)

Agreement with observed g
(Eco)
S -0.141 0.0 1.000

cheetah abundance

Average agreement g
(Grp)
H -0.486 -0.419 0.138

between consistent

group submodels and

hypothesis submodels

Overall agreement gCA -0.382 -0.294 0.230

Table 3: CA agreement measures before and after the SA-MDAS run wherein ecosystem
computations were kept o� during the computation of the �nal values. Agreement between
the ecological submodel's consistent distribution and its hypothesis distribution is not
computed because no parameters within this submodel are being estimated.
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Agreement measure Symbol Initial Consistent Percent

value value increase

Agreement with observed g
(Grp)
S 0.528 0.509 -0.360

actions history (match

fraction)

Agreement with observed g
(Eco)
S -0.141 -0.137 0.028

cheetah abundance

Average agreement g
(Grp)
H -0.486 -0.419 0.138

between consistent

group submodels and

hypothesis submodels

Overall agreement gCA -0.382 -0.338 0.114

Table 4: CA agreement measures before and after the SA-MDAS run with ecosystem
computations turned on when computing the �nal values.

Figure 1 displays the actions history generated by the CA-estimated503

model along with those observed actions that are matched by the CA-estimated504

model. To exhibit typical interaction patterns that are obscured in Figure 1,505

Figure 2 exhibits a closeup of the period from 2024 to 2025.506
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Political actions history

2020.00 2021.50 Time 2023.00 2024.50 2026.00

kp: invest in tourism infr
[request ivory]

ka: poach to protest
[open reserve ]

kp: open reserve to settle
[no input acti]

kr: poach for cash
[no input acti]

te: arrest some poach-ing
[poach for cas]

ta: anti-government riot
[fund rural de]

ka: agree to create wildli
[evict residen]

ng: form anti-wildlife cri
[agree to crea]

tp: host or attend conserv
[request ivory]

kp: evict residents from r
[anti-governme]

ka: poach for protection
[open reserve ]

ka: anti-government riot
[evict residen]

ka: request to graze insid
[no input acti]
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Figure 1: Model-generated actions history from 2020 through 2029. Green crosses are
observed actions matched by the the CA-estimated model. The o symbol denotes an
observation on cheetah abundance.
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Political actions history

2024.00 2024.25 Time 2024.50 2024.75 2025.00

ke: arrest some poach-ing
[anti-governme]

kp: evict residents from r
[anti-governme]

ta: anti-government riot
[no input acti]

tp: fund rural develop-men
[anti-governme]

te: arrest some poach-ing
[poach for cas]

kr: poach for cash
[evict residen]
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[open reserve ]
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[evict residen]
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Figure 2: Model-generated actions history from 2024 to 2025.

This example shows that SA-MDAS can �nd CA estimates of a political-507

ecological model's parameters in a practical amount of wall clock time.508

5. Finding the MPEMP509

Haas and Ferreira (2017) state that510

�A more general method of developing management policies is the511

most practical ecosystem management plan (MPEMP) of Haas512

(2011, Chapter 4). The MPEMP emerges from the pattern of513

group behaviors that results from modifying one or more group514

belief systems. These modi�cations are such that the agreement515
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between group belief systems that are estimated from data � and516

the belief systems that produce group actions that cause a desired517

ecosystem state, is maximized. In other words, the MPEMP is the518

sequence of group behaviors that occur from the least change in519

existing group beliefs systems that still achieves ecosystem state520

goals� (Haas and Ferreira, 2017).521

Clearly, �nding the MPEMP involves solving an optimization problem.522

This optimization problem is constrained by the requirement that any solu-523

tion needs to produce values of the ecosystem's output variables that are close524

to the desired values at the desired point in time. This implicit constraint525

is incorporated into SA-MDAS as a penalty function in a manner similar to526

the CA constraint of maintaining a maximal fraction of model-to-observed527

action matches.528

Only group submodel parameters can be variables in this constrained529

optimization problem. CA-estimated parameter values are used as starting530

values for all group submodels. During the optimization's search, however,531

all ecosystem submodel parameters are held at their CA-estimated values.532

Doing so represents the assumption made in the MPEMP computation that533

ecosystem dynamics are not under anthropogenic control but group belief534

systems are. Therefore, realistic ecosystem management plans should be re-535

stricted to making small modi�cations to human beliefs � and hence behavior536

rather than attempting to make changes to those ecological mechanisms that537

produce the modeled ecosystem's dynamics.538

The preferred solution to the MPEMP optimization problem is a local539

one rather than a global one. This is because the MPEMP is the plan that540

requires the least change in existing beliefs (as represented by the model's541

consistent distribution) needed to redirect human behaviors enough to allow542

the ecosystem to reach a desired state. Hence, a solution that is close to the543

existing set of beliefs needs to be found.544

The objective function in an MPEMP optimization problem needs to in-545

clude the ecosystem submodel. This because the e�ect of group actions on546

the ecosystem needs to be detected every time the objective function is eval-547

uated. Including the ecosystem submodel in the political-ecological model's548

simulation, however, can increase the objective function's evaluation time.549
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Further, when the ecosystem submodel is stochastic as in the East African550

cheetah example herein, the method of Bouttier and Gavra (2019) for solv-551

ing a stochastic, black-box optimization problem needs to be employed. This552

method involves taking the average of repeated evaluations of the stochastic553

objective function at a trial solution point. This averaged value has a smaller554

variance than the original stochastic objective function.555

The above discussion reveals that there are two computationaly expen-556

sive factors that complicate the evaluation of an MPEMP objective function.557

These are: The need to include the ecosystem submodel in the political-558

ecological model's simulation, and the need to compute an average over sev-559

eral function calls each time the optimization algorithm requires an objective560

function value. These two factors can cause the MPEMP objective function561

to have a long evaluation time. For instance, in the example below, the ob-562

jective function's evaluation time is about 59 seconds. This long evaluation563

time in-turn, causes a long wall clock time before a solution to the MPEMP564

optimization problem is found. And long wall clock times can be expensive.565

5.1. MPEMP algorithm566

5.1.1. Needed de�nitions567

1. The vector568

B =
[
B(Grp)′ B(Eco)′

]′
contains parameters of the group submodels, and the ecosystem sub-569

model, respectively.570

2. Let the vector, Q(B) contain the monitored ecosystem submodel vari-571

ables whose values are generated by the ecosystem submodel using572

parameter values contained in B.573

3. Let qd contain the desired ecosystem state in terms of Q(.) along with574

the time when these values are to be achieved.575

4. Identify those actions that, if taken, would contribute the most towards576

the ecosystem submodel producing the values in qd. And, identify577

those actions that, if ceased, would raise the likelihood of the ecosystem578

submodel producing the values in qd. Collect all of these desirable and579

undesirable actions into a set called cMPEMP .580
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5.1.2. Algorithm581

The following mathematical form of the MPEMP algorithm extends the582

one reported in Haas (2020).583

1. Compute CA estimates of selected model parameters, i.e., up-584

date BH to the most recent set of consistent parameter values:585

BC .586

2. Compute qH ≡ E [Q(BH)].587

3. Specify qd and cMPEMP .588

4. Compute initial values for B(Grp) with CA's Initialize step.589

5. Compute590

BMPEMP = argmax
B(Grp)

{
g
(Grp)
H (B)− ||E[Q(B)]− qd||

||qH − qd||

}
(3)

under the set of constraints speci�ed by cMPEMP .591

Note that during the search in Step 5, B(Eco)
H is unchanged.592

5.1.3. Quantifying political feasibility593

The MPEMP algorithm implements one way to quantify the concept of a594

politically feasible ecosystem management plan: Associate political feasibility595

with gH(B(Grp)

MPEMP) ∈ (−∞, 0] where B(Grp)

MPEMP contains the parameters of596

the decision making submodels whose values have been modi�ed from those597

in B(Grp)
H in such a way that now, the sequence of output actions taken by the598

di�erent groups in the model causes a desired ecosystem state at a desired599

future time point (qd).600

A measure of a plan's political feasibility can be de�ned as601

ψ ≡ g
(Grp)
H (B(Grp)

MPEMP)/(|g
(Grp)
H (BH)|+ 0.000001). (4)

The numerator is the agreement of the MPEMP distribution with the hy-602

pothesis distribution where large negative values indicate poor agreement.603

The �rst term in the denominator is the absolute value of the agreement of604

the model's distribution with the hypothesis distribution � using parameter605

values from the hypothesis distribution itself. When approximation error is606

zero, this term is zero. Hence, g(Grp)
H (B(Grp)

MPEMP) ≤ |g(Grp)
H (BH)|.607
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A plan having a value of ψ << −1.0 will face sti� political resistance to608

its implementation because signi�cant changes to the belief systems of one609

or more groups needs to happen � while a plan having a value close to -1.0610

should not face such strong political headwinds.611

5.2. Results612

The desired ecosystem state is 800 cheetah across Kenya and Tanzania613

in the year 2029.614

The parameters to be modi�ed during the search for the MPEMP are615

those used in the above CA example with the addition of the parameters616

de�ning the node: Number of Cheetah Poached (NMPOACHED) under the617

proposed action of poach cheetah for protection for both Kenya rural residents618

and Tanzania rural residents.619

These parameters are included in the MPEMP computation in order to620

study the feasibility of a two-pronged approach to cheetah conservation: Dis-621

couraging rural residents from poaching cheetah for cash while at the same622

time increasing antipoaching measures. To these ends, the SIIWP parame-623

ters are included to guide the amount of belief-change that would be needed624

to discourage rural residents from poaching cheetah for cash � and the NM-625

POACHED parameters to �nd the needed increase in antipoaching measures626

to stop rural residents from poaching cheetahs for protection. Optimizing627

these two sets of parameters simultaneously results in smaller changes to628

these parameters relative to the changes that would be required if only one629

of these sets was changed without changing the other. And smaller changes630

give the plan greater political feasibility.631

In summary, the CA estimation modi�es the SIIWP parameters concern-632

ing poach cheetah for cash. The MPEMP computation modi�es the SIIWP633

parameters concerning poach cheetah for cash and the NMPOACHED pa-634

rameters conditional on poach cheetah for protection.635

5.2.1. MPEMP computation636

To begin the optimization computation at a feasible solution, initial values637

of the SIIWP parameters were modi�ed to produce the following output638

actions by both the Kenya rural resident group, and the Tanzania rural639

resident group: no poach cheetah for cash actions, no poach cheetah for food640
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actions; but high probabilities for the actions, poach cheetah for protection,641

and protest national park boundaries.642

Due to a modest computing budget, the sample size for averaging values643

of the stochastic objective function was �xed at three for the entire run. Not644

allowing this sample size to increase each pass through SA's outer loop means645

that the convergence proof of Bouttier and Gavra (2019) is only partially646

satis�ed for this run. This proof states that if the algorithm of Bouttier647

and Gavra (2019) is followed, SA will converge to the global minimum of648

the stochastic objective function's expected value. Had this sample size been649

allowed to increase every pass through SA's outer loop, it would have equalled650

39 when phase one �nished.651

Running on the TSCC, the SA-MDAS algorithm was restricted to 3000652

objective function evaluations for each phase. The run employed three per-653

formers executing on 10 threads each. The run's wall clock time was 8.8654

hours. The initial MPEMP objective function value was -0.779, and the �nal655

value was -0.711 for a 8.66% increase. Phase one converged after 1661 func-656

tion evaluations and phase two terminated after 3037 function evaluations657

because it had exceeded its maximum number of function evaluations.658

5.2.2. The computed MPEMP659

This run produced an MPEMP that is projected to allow an expected660

cheetah population size of 278 by 2029. This is short of the desired goal of661

800 cheetah by 2029 but avoids the forecast extinction event at the end of662

2029 under the business-as-usual plan. The measure of the plan's political663

feasibility, ψ was computed to be -1.025.664

Tables 5 and 6 show each parameter's de�nition, its CA value, and its665

MPEMP value. These parameter value changes indicate that the MPEMP is666

to (a) change the belief in being arrested for poaching cheetah for cash from667

being perceived as negligible to being perceived as likely; and (b) increase668

antipoaching measures to the point where Kenya and Tanzania rural residents669

each succeed in poaching less than six cheetah per week.670

The number of cheetah poached per week by Kenya rural residents and671

the number of cheetah poached per week by Tanzania rural residents were672

not adjusted by the CA. Hence, these two parameters were held at their673

hypothesis values. These hypothesis values are slightly below the upper674

27



bound constraint shared by these parameters. This upper bound value is675

six. This value indicates a signi�cant amount of poaching that aligns with676

the hypothesis-belief held by these rural residents that they will not be ar-677

rested for poaching cheetah.678
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Parameter Node CA MPEMP Change > 10%
value value fraction change?

1 Number_Poached 5.994 3.574 00.403 *

2 SIIWP 00.274 00.193 00.294 *

3 SIIWP 00.356 00.232 00.347 *

4 SIIWP 00.369 00.573 00.555 *

5 SIIWP 00.054 00.320 4.926 *

6 SIIWP 00.346 00.357 00.029

7 SIIWP 00.599 00.322 00.461 *

8 SIIWP 00.166 00.553 2.337 *

9 SIIWP 00.402 00.119 00.702 *

10 SIIWP 00.431 00.326 00.244 *

11 SIIWP 00.410 00.036 00.911 *

12 SIIWP 00.133 00.739 4.558 *

13 SIIWP 00.455 00.224 00.507 *

14 SIIWP 00.346 00.329 00.047

15 SIIWP 00.056 00.329 4.878 *

16 SIIWP 00.598 00.341 00.429 *

17 SIIWP 00.175 00.461 1.634 *

18 SIIWP 00.292 00.373 00.280 *

19 SIIWP 00.533 00.165 00.690 *

20 SIIWP 00.242 00.535 1.214 *

21 SIIWP 00.490 00.337 00.310 *

22 SIIWP 00.268 00.126 00.528 *

23 SIIWP 00.118 00.403 2.387 *

24 SIIWP 00.253 00.202 00.199 *

25 SIIWP 00.628 00.394 00.372 *

26 SIIWP 00.306 00.197 00.355 *

27 SIIWP 00.400 00.660 00.647 *

28 SIIWP 00.292 00.142 00.515 *

Table 5: Kenya rural resident parameter value changes needed to produce the MPEMP.
The �rst parameter is the average number of cheetah poached per week by Kenya rural
residents. The second set of parameters de�ne the perceived outcome by Kenya rural
residents under the decision option to poach cheetah for cash. Perceived outcomes are will
be arrested for poaching, will be evicted, and no interaction with police.
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Parameter Node CA MPEMP Change > 10%
value value fraction change?

29 Number_Poached 5.994 5.372 00.103 *

30 SIIWP 00.039 00.328 7.423 *

31 SIIWP 00.521 00.183 00.647 *

32 SIIWP 00.439 00.487 00.108 *

33 SIIWP 00.330 00.552 00.675 *

34 SIIWP 00.296 00.406 00.368 *

35 SIIWP 00.373 00.040 00.890 *

36 SIIWP 00.250 00.370 00.474 *

37 SIIWP 00.024 00.403 15.802 *

38 SIIWP 00.725 00.226 00.687 *

39 SIIWP 00.289 00.318 00.103 *

40 SIIWP 00.099 00.310 2.137 *

41 SIIWP 00.612 00.370 00.394 *

42 SIIWP 00.272 00.290 00.068

43 SIIWP 00.400 00.352 00.118 *

44 SIIWP 00.328 00.356 00.087

45 SIIWP 00.450 00.082 00.817 *

46 SIIWP 00.167 00.446 1.674 *

47 SIIWP 00.382 00.471 00.233 *

48 SIIWP 00.209 00.540 1.586 *

49 SIIWP 00.471 00.240 00.491 *

50 SIIWP 00.319 00.219 00.313 *

51 SIIWP 00.153 00.335 1.190 *

52 SIIWP 00.290 00.290 00.000

53 SIIWP 00.557 00.374 00.327 *

54 SIIWP 00.132 00.320 1.426 *

55 SIIWP 00.048 00.252 4.259 *

56 SIIWP 00.820 00.427 00.478 *

Table 6: Tanzania rural resident parameter value changes needed to produce the MPEMP.
The �rst parameter is the average number of cheetah poached per week by Tanzania rural
residents. The second set of parameters de�ne the perceived outcome by Tanzania rural
residents under the decision option to poach cheetah for cash. Perceived outcomes are will
be arrested for poaching, will be evicted, and no interaction with police.
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5.2.3. The MPEMP's political consequences679

Because of ψ's modestly negative value, this MPEMP is expected to680

face moderate political resistance. A practical policy for implementing this681

MPEMP is to simultaneously (a) visibly increase antipoaching enforcement682

in both countries, and (b) communicate such increases to the rural residents683

of Kenya and Tanzania (Kegamba et al., 2024), (Nachihangu et al., 2022).684

This �tted model and the political insights derived from it, are new.685

5.3. The MPEMP compared to other conservation planning tools686

5.3.1. Marxan687

Marxan helps users select a set of conservation reserves (hereafter, a set688

of reserve patches) that satisfy ecological, social, and �nancial goals. The689

Marine Spatial Planning group at the Nature Conservancy gives this overview690

of Marxan:691

�Marxan is decision support software for designing new reserve692

systems, reporting on performance of existing reserve systems,693

and developing multiple-use zoning plans. It is the most widely694

adopted site selection tool by conservation groups globally. Marxan695

is a stand-alone software program that provides decision support696

to teams of conservation planners and local experts identifying697

e�cient areas that combine to satisfy a number of ecological, so-698

cial and economic objectives. Given data on species, habitats,699

ecosystems and other biodiversity features, Marxan was designed700

to minimize the cost of selected sites while meeting all goals (Ma-701

rine Spatial Planning (2025)).�702

Marxan �nds these plans by solving the set covering problem (Liang et al.,703

2020), (Watts et al., 2021). Marxan is strictly spatial in that the tool does not704

recognize any temporal component in the spatial data it is given. Also, the705

user provides all parameter values and Marxan makes no e�ort to incorporate706

parameter uncertainties into its �nal solution. The only conservation plans707

that Marxan can deliver are maps identifying the location and geometry of708

each reserve patch.709

Once computed, these reserve patches will presumably be forced onto710

landscape residents by authoritarian actions such as the purchase of land or711
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the successful lobbying for the conversion of privately-held real estate into712

reserve patches.713

The MPEMP by comparison, emerges from the political realities sur-714

rounding a biodiversity conservation challenge and allows plans to include715

non-command-and-control solutions such as community-led changes in lan-716

duse on private, non-reserve lands.717

Marxan assumes that di�erent sets of reserve patches can be mandated718

without requiring community acceptance of the plan. In other words, Marxan719

does not have readily-available inputs to represent data-derived political720

forces that determine the political feasibility of mandating a set of reserve721

patches. On the other hand, the central capability of the MPEMP construc-722

tor is its ability to model these forces and their e�ects on the management723

of an ecosystem.724

The set covering problem is a classic, simple, linear, binary integer pro-725

gramming problem (Liang et al., 2020). Continuously-valued metrics are not726

allowed, nonlinear objective functions are not allowed, and integer variables727

with more than two values are not allowed. Marxan runs on a single-CPU728

computer. Hence, its ability to solve its set covering problem is, by design,729

computationally limited. Unfortunately, the set covering problem is known730

to be NP-hard (Liang et al., 2020) meaning that �nding a solution to a com-731

plex planning problem involving many possible sets of reserve patches can732

take many months of wall clock time on a single-CPU computer to reach the733

optimal solution.734

But real-world reserve-set planning problems usually involve many pos-735

sible solutions. This is similar to the set of possible plans for e�ectively736

protecting an ecosystem within a larger political-ecological system � the prob-737

lem that the present article solves. In contrast to Marxan, the present article738

has tackled this crippling computational-expense roadblock head-on with its739

cluster computing-based algorithm, SA-MDAS. SA-MDAS is designed to �nd740

the MPEMP in a practical amount of wall clock time as opposed to the sev-741

eral months of wall clock time that Marxan might spend in order to �nd an742

optimal set of reserve patches.743

5.3.2. Zonation 5744

The Finnish Environment Institute describes Zonation as follows:745
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�The Zonation software enables prioritisation analyses of conser-746

vation values based on spatial data to support decision-making,747

conservation area planning, and the avoidance of negative eco-748

logical impacts. It can incorporate a wide range of data, includ-749

ing information on uncertainties and connectivity. The analyses750

can be highly detailed and extensive, depending on the available751

datasets (Finnish Environment Institute, 2025).�752

In addition, Moilanen et al. (2022) describe the newest version of this spatial753

conservation planning tool: Zonation Version 5.754

Similar to Marxan, this tool helps the user to identify a set of reserve755

patches within a given landscape. Di�ering from Marxan, however, this756

tool does not explicitly solve an optimization problem in order to �nd a757

set of patches that optimally meet a collection of target values on selected758

ecological metrics. Rather, Zonation 5 performs a nested, two-level sort on759

a large number of spatial units that collectively make up a landscape. This760

sorting operation produces a ranked list of reserve patch geometries. Many761

assumptions are made about what is ecologically preferred in order to place762

enough characteristics on each spatial unit to allow the sorting algorithm to763

compute rank-di�erences between spatial units. As with Marxan, Zonation 5764

is strictly spatial in that the tool does not recognize any temporal component765

in the spatial data it is given.766

Because Zonation 5 employs an e�cient sorting algorithm, it can quickly767

rank-order a large number of spatial units on a single-CPU computer. Zona-768

tion 5 does allow some political forces to impact its solutions by allowing the769

user to input a set of �local preferences.� As with Marxan, however, the user770

provides all parameter values with Zonation 5 making no e�ort to incorpo-771

rate parameter uncertainties into its �nal rank-ordering of possible reserve772

patch geometries.773

As an aside, in actuality, sorting can be cast as an optimization problem774

solved with a greedy search algorithm (Bauckhage and Welke, 2022). It is775

the greedy nature of the search algorithm that allows Zonation to perform776

e�cient sorts on a single-CPU computer.777
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5.3.3. Assessment778

These two tools only deliver a set of reserve patches across a given land-779

scape. Neither tool allows, as the MPEMP computation does, a user to780

model the political-ecological system that the landscape is a part of � let781

alone provide a capability for statistically �tting such a model's parameters782

to a political-ecological data set.783

A major drawback that makes these tools insu�cient in light of current784

political realities is their inability to allow a user to explore alternate con-785

servation plans that might involve initiatives that are not a command-and-786

control gazzetting of land into reserve patches. Initiatives such as developing787

alternate livelihoods, installing wildlife control fencing, increasing antipoach-788

ing e�orts, relocating animals, shooting marauding elephants, eradicating789

invasive plants, donating antipoaching equipment, planting trees, restor-790

ing mine tailings areas, compensating farmers for wildlife damages, and the791

downgrading, downsizing, and degazettement of protected areas (PADDD)792

Albrecht et al. (2021) � are not part of either tool's plan repertoire. See the793

�le emat.dfn in the Supplementary Materials �le, MPEMP_constructor.zip794

for a complete list of such alternate conservation actions as gleaned from795

political-ecological data acquired using the STAR protocol of Haas (2024b).796

The critical de�ciency of both of these tools, however, is that because all797

priority weights are user-speci�ed, any plan delivered by either tool, unlike798

the MPEMP, lacks a data-derived, real-world measure of the plan's political799

feasibility.800

6. Challenges801

Before political-ecological modelling of global extinction events can guide802

conservation e�orts, several challenges need to be overcome. Below is a803

priority-ordered list of some of these challenges.804

1. Collaboration with the private sector is needed in order to tap their dis-805

tributed autonomy; enormous reserves of talent; and enormous reserves806

of cash and credit (Haas, 2022), (Haas, 2024c), (Haas, 2025).807

2. Better political-ecological data sets need to be acquired that, via clus-808

ter computer computations, can be used to statistically �t the param-809
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eters of these extinction event models. On the political side, observa-810

tions need to be acquired on those private political agreements that811

often determine the fate of conservation legislation. On the ecological812

side, unrestricted and noninvasive monitoring of species abundance is813

needed. Currently, such data is often restricted because (a) owners814

refuse access to their properties, and/or (b) data managers fear that815

poachers will hack into the data's repository in order to locate wildlife816

(Lennox et al., 2020).817

3. In order to make the statistical �tting of these models feasible to a818

wide spectrum of researchers, cluster computing resources need to be819

�nancially accessible to cash-strapped departments of ecology and de-820

partments of political science.821

One economical alternative to purchasing time on a commercial cluster822

computer is to organize some number of in-house computers into a823

cluster computer. With the JavaSpaces-based SA-MDAS algorithm,824

this is a straightforward four-step build:825

(a) Install on an impresario, a dynamic domain name system (DDNS)826

(mintdns, 2023) in order to give this computer a �xed domain827

name so that performers can locate its GigaSpace. A DDNS is828

acquired from an internet provider or from a DDNS provider. Fees829

can be either none; a �xed monthly charge; or a monthly, usage-830

based charge.831

(b) Verify that all performers can access the internet.832

(c) Install the JAVA Development Kit (free) and the GigaSpaces XAP833

(annual lease) on the impresario and all performers.834

(d) Compile and run on these computers, the JAVA code exercised in835

this article.836

4. The credibility of political-ecological models in the eyes of their skeptics837

needs to be established by meeting Popperian credibility criteria that838

are based on frequentist statistical methods (Haas, 2024) � rather than839

relying on the lobbying e�orts of activist scientists (Whipple, 2024).840

Such rigorous, statistically-based model validation results are needed841

to maximize the acceptance by the general public of extinction-event842

predictions. This would be in contrast to the acceptance of the decla-843

rations made by the authors of climate models concerning the causes844
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of climate change. For instance, fewer than 50% of Americans believe845

that climate change is driven by anthropogenic forces (EPIC, 2023) �846

the central mechanism that is programmed into almost all mainstream847

climate models. In order to marshal the necessary support for expen-848

sive biodiversity conservation projects, a much higher proportion of849

popular support will be needed than what is given to climate change850

mitigation policies.851

Indeed, climate models do not currently meet rigorous statistical mea-852

sures of model credibility. For instance, Michaels (2019) notes that853

recent research indicates that the averaging of predictions across many854

di�erent climate models as is routinely reported by the Intergovern-855

mental Panel on Climate Change (IPCC), increases prediction errors.856

This author suggests that work should focus on developing a single857

model that has low prediction errors. And Jain et al. (2023) �nd sig-858

ni�cant errors in model predictions of observed weather and suggest859

more computing resources may be needed to reduce this error.860

A literature search failed to �nd a peer-reviewed article that reports861

on a climate model that produces predictions of out-of-sample obser-862

vations to any speci�c, quanti�ed level of accuracy. Nonetheless, such863

models are routinely used to justify climate-change mitigation policy864

decisions. This use of incompletely validated climate models has only865

fueled skepticism about the credibility of climate models. These skep-866

tics instead, suspect that climate change policymaking is being driven867

by �awed models (Montford, 2022). Indeed, in a particularly worrisome868

passage, Montford mentions the current practice of �tuning� model pa-869

rameters to increase a climate model's agreement with observations.870

Such tuning is outside any frequentist-based statistical method of pa-871

rameter estimation.872

5. Group decision making mechanisms need to be better understood. Such873

newly-derived mechanisms need to be programmed into each group de-874

cision making submodel that runs within a political-ecological model.875

Also, computational models need to be developed that, through im-876

proved architectures, realistically integrate political and ecological pro-877

cesses. One such architecture employed herein is that of agent-based878
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submodels communicating with each other and with an individual-879

based ecosystem submodel through a bulletin board.880

6. Increased �nancial and career support is needed for interdisciplinary881

research on the integration of political and ecological processes. Within882

academia, this support will be aided when (a) journal editors encourage883

the publication of high-quality manuscripts that probe this interface884

(Huber-Sannwald, 2025), (O'Connor et al., 2021), (Van Bael, 2025);885

and (b) departmental committees encourage tenure-track faculty to886

publish at this interface (Washbourne et al., 2024). Outside academia,887

funding agencies need to seek out and fund high-quality proposals to888

build and test models of those political-ecological systems that contain889

at-risk species.890

7. Conclusions891

For purposes of biodiversity conservation, attention needs to focus on892

�nding politically feasible projects aimed at conserving biodiversity. Earth893

is running out of time to save what remains of its biodiversity. MPEMPs894

need to be computed and implemented as soon as possible. This article895

shows that, thanks to the new optimization algorithm introduced herein,896

these computations are now feasible. Indeed, as explained in the Appendix,897

an optimization algorithm such as SA-MDAS that scales on the increasing898

availability of cluster computer nodes, is currently, the only feasible way to899

statistically �t a large political-ecological model to data.900

The political-ecological models that will support these projects, can have901

their parameters statistically estimated via CA to political-ecological data902

sets acquired via the STAR protocol of Haas (2024b). Use of CA to perform903

this parameter estimation, allows cognitive theories of decision making to be904

represented in the �nal �tted models.905

As per this article's title, the MPEMP is how a political-ecological model906

can help sustain biodiversity. The freely available MPEMP constructor can907

be immediately used by an organization to develop and implement politically908

feasible and ecologically e�ective plans for conserving those at-risk species909

that they have selected to help preserve.910
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Given the current negative trends in biodiversity, one might conclude911

that conservation research is futile and hence, should be abandoned. A re-912

cent meta-analysis, however, using data from many di�erent conservation913

projects, �nds that actually, conservation projects have been e�ective at914

stopping or at least slowing the decline of biodiversity across the globe (Ox-915

ford, 2024). Given this evidence, there is reason to believe that research916

products such as the MPEMP constructor o�ered in this article, can help917

build a conservation science that is capable of guiding successful e�orts to918

curb the loss of species regardless of their commercial value.919

Supplementary material920

All source code and input �les that constitute the MPEMP constructor921

described and exercised in this article are contained in the Supplementary922

Material �les idsrce.zip (JAVA source code), and MPEMP_constructor.zip923

(linux shell scripts, input command �les, and data �les).924
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Appendix: SA-MDAS Details and Comparisons1206

Continuous variables1207

All parameters in the political-ecological model studied in Section 4 are1208

continuous. Hence, a method is needed for applying SA to continuously-1209

valued variables. Here, the method developed in Corana et al. (1987) is used.1210

One way to specify the length of SA's Markov chain, i.e., the number of passes1211

through SA's inner loop, is to de�ne it to be the size of the neighborhood1212

surrounding the current solution point (Aarts and Korst, 1989, p. 65), i.e.,1213

the number of points reachable in one move. Given a small step length, the1214

number of possible solution space points accessible in one move can become1215

large.1216

Corana et al. (1987) take a di�erent approach. They de�ne their ns1217

constant to be how many times each variable is subjected to trial moves1218

within one pass through SA's inner loop. Each variable is subjected to these1219

ns trials sequentially. Consequently, the value n×ns becomes in-e�ect, their1220

chain length. These authors do not attempt to equate their de-facto chain1221

length de�nition with the number of possible points accessible in one move1222

� and instead, simply recommend ns be set to 20. In SA-MDAS, however,1223

a move always consists of a possible step-change on each and every variable.1224

Therefore, in SA-MDAS, ns is the number of times that moves are made1225

within one pass through SA's inner loop.1226

As in Corana et al. (1987), SA-MDAS recomputes each variable's step1227

length every pass through the outer loop. Except for initialization, step1228

length updates in SA-MDAS use equations given in (Corana et al., 1987, p.1229

267).1230

The step length's �varying criterion,� Corana et al. (1987) and the step1231

lengths themselves need to be initialized. This is accomplished by �rst as-1232

suming that the median is returned by the uniform random number generator1233

on the unit interval, i.e., the value 0.5. Then, the initial median step length1234

is initialized to be the width of the widest set of the n bound constraints1235

divided by 50 � and then multiplied by this median value. The chain length1236

is �xed at the value 10× ns where ns = 3.1237

The continuous-variable scheme of Corana et al. (1987) for SA maintains1238

an approximately 50% acceptance rate at every temperature, t. But this is1239
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accomplished by progressively making the step length along each variable,1240

smaller. Hence, as the temperature decreases, the chance that SA will break1241

into a signi�cantly more optimal subspace becomes small since, as the tem-1242

perature decreases, a typical move will be close to the currrent point. Hence,1243

at some temperature, the global search capability of SA will become practi-1244

cally nonexistent.1245

Stochastic objective functions1246

SA-MDAS can handle stochastic objective functions using a method de-1247

veloped by Bouttier and Gavra (2019). These authors de�ne a �time� vari-1248

able, t. To avoid confusion with this article's notation for �temperature,� u is1249

used here to refer to this variable. In the Bouttier and Gavra (2019) method,1250

instead of evaluating the objective function once when a �score� evaluation is1251

needed, the function is evaluated nu times at the same point in the solution1252

space. These nu values are then averaged and returned as the score value at1253

that point. The size of nu increases as u (time) increases.1254

The value of u is updated every pass through the outer loop with u = u+ζ1255

where ζ is a realization from the Exponential(1.0) distribution. Because1256

the expected value of this distribution is 1.0, this update is, on average,1257

adding the value 1.0 to u every pass through the outer loop. Addition of1258

this stochastic term rather than the addition of the �xed value 1.0 to u every1259

pass through the outer loop is necessary to allow the chain of SA-generated1260

solutions to be modeled as a continuous-time Markov process. This is the1261

model that is assumed in the proof of their method's convergence.1262

Further, their method requires a function mapping u to nu. One such1263

function that is used by the authors in their numerical experiments is1264

nu = f(u) = ⌊u⌋ (5)

where ⌊.⌋ is the �oor function.1265

In Step (g) of the algorithm in Section 3.4, Bouttier and Gavra (2019)1266

have the temperature, t decreased by some function of u such as t = 1/u. But1267

doing so ignores the standard deviation of the objective function estimated1268

after each pass through SA's inner loop. Hence, SA-MDAS employs the Aarts1269

and Korst (1989) algorithm to decrement t for both deterministic objective1270

functions and for stochastic objective functions.1271

49



Inter-performer coupling1272

By executing its MPE Step, SA-MDAS couples the performers to each1273

other by allowing them to always begin their respective chains at the current1274

best solution that was found across all performers during the last outer loop1275

iteration.1276

Message-passing overhead1277

Spreading tasks across a cluster of performers as is done in SA-MDAS is1278

known to have some amount of latency (Pichetti et al., 2024). Here, such1279

latency is viewed as a minor issue because the optimization problem's ob-1280

jective function, being composed of interacting agent/individual stochastic1281

submodels, is computationally expensive to evaluate. Hence, most of the1282

compute time needed to estimate the parameters of the political-ecological1283

model will typically be taken by objective function evaluations rather than1284

by inter-node messaging.1285

To verify this hunch, an experiment was conducted using Bukin's F4 func-1286

tion. This function takes very little compute time. SA-MDAS was run on1287

a WindowsTM laptop computer with 32 GB of memory running at 1.2 GHz.1288

Doing so resulted in SA-MDAS requiring 1.62 seconds to compute 192K eval-1289

uations of Bukin's F4 function. SA-MDAS was next run on the TSCC to1290

perform 1,400 evaluations of this same function using two performers com-1291

municating with the impresario through a GigaSpace. Wall clock time for1292

these evaluations was seven minutes. Almost all of this time was devoted to1293

inter-node message-passing. These values suggest that a GigaSpaces imple-1294

mentation of SA-MDAS requires about 0.3 seconds to complete a round-trip,1295

i.e., the posting of a task to the GigaSpace, a performer down-loading the1296

task, uploading the result, and the impresario taking the result o� of the1297

GigaSpace. Note that a round-trip does not include the objective function's1298

evaluation.1299

Let x be the number of minutes needed to evaluate the objective func-1300

tion. Assume a 100-node cluster computer is available. Then, the break-even1301

function evaluation time can be estimated by solving for x in:1302

192000x = 192000x/100 + 192000(0.3/60) (6)
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The left side of 6 is the time needed to compute 192K function evaluations1303

on a single-processor computer, while the right side is the time needed to1304

compute the same number of evaluations on a cluster computer running 1001305

nodes in parallel. Equation 6 can be written as 0.99x = 0.3/60, i.e., x is1306

approximately equal to the roundtrip time. Hence, for expensive functions,1307

cluster computing can speed-up black-box optimization problems even when1308

round-trip times are as large as 0.3 seconds. And further, this speed-up1309

increases as the objective function's evaluation time increases.1310

Evaluating the political-ecological model's CA objective function in the1311

example of Section 4, requires about 15 seconds. Hence, an optimization1312

algorithm that scales on the increasing availability of cluster computer nodes,1313

is currently, the only feasible way to statistically �t a large political-ecological1314

model to data.1315

Comparisons with other optimization algorithms1316

The optimization problem of least sum-of-squares possesses a very smooth,1317

unimodal objective function. Using only phase one (SA), SA-MDAS needed1318

3,780 evaluations to solve a 27-variable least sum-of-squares problem. Whereas1319

a Hooke and Jeeves algorithm (Haas, 2020) needed 1,725 evaluations, and a1320

Random Search algorithm (Schumer and Steiglitz (1968)) needed 1,568 eval-1321

uations. These latter two algorithms are local, nonstochastic, and do not1322

scale well as neither can make use of more than one compute node.1323

Similar to PACSA, SA-MDAS phase one mainly uses parallel processing1324

to store the end result of many chains in order to increase the chance that it1325

will �nd the global minimum point � not necessarily to speed up the solution1326

time (Gonçalves-e-Silva et al., 2018). In other words, the focus of SA-MDAS1327

phase one is to �nd the global minimum, not to speed up the solution. Even1328

with this caveat, SA-MDAS phase one takes only about twice as long to solve1329

a 27-variable least-squares problem as do two strictly local-search algorithms.1330

SA performs global search through decisions to probabilistically accept1331

uphill moves (worse objective function values) rather than delineating a par-1332

titioning of the solution space �rst and then evaluating the function at some1333

point in each partition as is done for example, in Jia et al. (2024). Such a1334

partitioning-then-evaluation approach to global optimization results in many1335
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objective function evaluations regardless of whether they end up being uphill1336

or downhill values. Further, there is an implicit assumption that all points1337

within a partition have function values that are similar to the value at the1338

single point actually evaluated in that partition.1339

MDAS, being more focused on local search than SA, employs many per-1340

formers to1341

1. Perform limited global search (up to them dimensions (variables) being1342

searched simultaneously), and1343

2. Produce a speedup from the sequential Hooke and Jeeves algorithm1344

by evaluating the objective function at all m-dimensions-ahead search1345

points simultaneously rather than sequentially.1346
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