
Finding Drivers of
Biodiversity Offering Sales

1 Introduction

An autoregression model can quantify the relationship between certain drivers and sales

potential. In particular, such a model fitted to data can help identify what customer

groups are driving sales growth where these groups are defined by different combinations

of gender, age, income, home ownership, and education level.

Another important metric for campaign decision making is the probability of a repeat

customer.

Both of these models can be constructed and fitted to data as described in the

following sections.

2 Modeling Sales Potential of a New Product

2.1 Measuring sales potential

Letting sales at time t be S(t), one measurable way to quantify sales potential is with

the growth rate through time of the biodiversity offering’s sales: SGRit = dS(t)/dt, i.e.,

the instantaneous change in sales at time t.

2.2 Predictor variables

1. genderi: gender of customer i: male, female, other.

2. agei: age class of customer i: teen, twenties, thirties, forties, fifties, sixties, senior.

3. incomei: household income in USD of customer i.

4. ownhomei: home ownership status of customer i. Takes on the values renting, or

own home.

5. educationi: education class of customer i: up through secondary, up through

post-secondary, graduate degree.

6. channeli: the advertising channel that customer i used to learn about the offering.

Takes on the values TV, radio, Facebook, X, Instagram, WhatsApp, and print

magazines.
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2.3 Model

Letting the time points be t1, . . . , tJ , the model is

SGRtj ,k,l,m,n,o = β0 + tjβtj + βgenderk
+ βagel + βincomem + βownhomen

+ βeducationo
+ Ztj (1)

where

Ztj = −
p∑

k=1

ϕkZtj−k
+ ϵtj , (2)

and

SGRtj ,k,l,m,n,o =
STtj ,k,l,m,n,o − STtj−1,k,l,m,n,o

tj − tj−1

. (3)

The computed variable, STtj ,k,l,m,n,o is total sales during time interval {tj−1, tj} across

all customers who are in gender class k, age class l, income class m, ownhome class n,

and education class o.

Channel choice is not a predictor variable in this model because if it were, inde-

pendence across groups could not be guaranteed. This is because a customer may use

different channels at different times, and hence, two goups may contain the same cus-

tomer at two or more different time points.

2.4 Data requirements

A data set is needed to fit this model. Specifically, observations are needed on the

set of variables, {Si,ti , genderi, agei, incomei, ownhomei, educationi} on customers

i = 1, . . . , nc, at times ti = 1, . . . , Ti.

3 A Model of Repeat Purchasing

Let ri,ti be h if customer i used channel h to help them reach their final decision to go

ahead and purchase the biodiversity offering at time ti where h = 1, . . . , H with H > 1.

If the biodiversity offering is an insurance policy, it may be able to be purchased for a

one-time annual fee. In this case, if a customer purchased an annual insurance premium

and has not cancelled the policy up through time ti, assume that the customer used the

same channel at time ti as they did when they purchased the policy.

Channel choice for making biodiversity offering purchase decisions through time is

modeled with a multinomial, generalized logit, time series model:

logit(hi,ti) = β0,h + tiβti,h + βgenderi,h
+ βagei,h + βincomei,h + βownhomei,h

+ βeducationi,h
. (4)
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The SAS code file, channels.sas at ../software/index.html fits this autoregressive

logistic regression model to a small, hypothetical data set that is included in that file.

3.1 Data requirements

A data set is needed to fit this model. Specifically, observations are needed on customers

who have completed a biodiversity offering purchase. For each of these customers, ob-

servations are needed on the following set of variables:

{Si,ti , channeli,ti , genderi, agei, incomei, ownhomei, educationi} .

4 Notes

These models are predictive and hence, once fitted to data, can be used to predict

conditions that will lead to growth in biodiversity offering revenue in the future.

If the number of observations is less than the number of model parameters in the

model, modern methods will be needed to fit these models to data and to test hypotheses

with them. The authors of guerrier_bias_correction.pdf give one such method.

This situation may arise when fitting the generalized logit model of channel choice

because such a model’s parameter count grows multiplicatively with H.
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Appendix: Autoregression

Also called regression with autocorrelated or autoregressive errors.

1. SAS proc autoreg fits the model:

Yt = β0 +
K∑
i=1

βixit + Zt (5)

where

Zt = −
p∑

i=1

ϕiZt−i + ϵt (6)

and ϵt is i.i.d. N(0, σ2), i.e., a white noise process.

2. Alway use the Maximum Likelihood (ml) estimation method.

3. proc autoreg can test for the three assumptions that are made when this model

is employed:

(a) Var[ϵt] = σ2 for all t (homoscedasticity of white noise variance)

(b) Autocorrelation of the white noise process is zero at any lag.

(c) ϵt ≡ i.i.d. N(0, σ2).

4. These assumptions are listed in their order of importance.

5. Heteroscedasticity is tested for with two tests: the Portmanteau Q test and the

Engle-Lagrange test.

6. The Durbin-Watson test is applied to the residuals after correcting for autocor-

relation if nlag is nonzero. Doing so is a bit theoretically-compromised because

ϵ∗t = yt − y∗t where y∗t is the predicted value of Yt.

7. This not-so-legitimate fact is a bit hard to find in the SAS documentation but is

mentioned in their Money Demand example.

8. Apparently, the normality of ϵt is tested for with the Bera-Jarque test.

4.1 Prediction

1. Let Y ∗
t be the predicted value at t, and let Z∗

t be the predicted autoregressive error

value at t.
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2. In proc autoreg’s output statement, Y ∗
t values are produced with p= set to a

user-defined name, and Z∗
t values are produced with rm= set to a user-defined

name.

3. proc autoreg refers to Z∗
t as the “residuals from the structural prediction.” The

structural component of the model is the trend component: β0 +
∑K

i=1 βixit.

4. A prediction at time t is computed with

Y ∗
t = β̂0 +

K∑
i=1

β̂ixit + Z∗
t (7)

where

Z∗
t = −

p∑
i=1

ϕ̂iZ
∗
t−i. (8)
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